Skip to main content
Log in

Functional Changes of Mentalizing Network in SCA2 Patients: Novel Insights into Understanding the Social Cerebellum

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In recent years, increasing evidence of the cerebellar role in social cognition has emerged. The cerebellum has been shown to modulate cortical activity of social brain regions serving as a regulator of function-specific mentalizing and mirroring processes. In particular, a mentalizing area in the posterior cerebellum, specifically Crus II, is preferentially recruited for more complex and abstract forms of social processing, together with mentalizing cerebral areas including the dorsal medial prefrontal cortex (dmPFC), the temporo-parietal junction (TPJ), and the precuneus. In the present study, the network-based statistics approach was used to assess functional connectivity (FC) differences within this mentalizing cerebello-cerebral network associated with a specific cerebellar damage. To this aim, patients affected by spinocerebellar ataxia type 2 (SCA2), a neurodegenerative disease specifically affecting regions of the cerebellar cortex, and age-matched healthy subjects have been enrolled. The dmPFC, left and right TPJ, the precuneus, and the cerebellar Crus II were used as regions of interest to construct the mentalizing network to be analyzed and evaluate pairwise functional relations between them. When compared with controls, SCA2 patients showed altered internodal connectivity between dmPFC, left (L-) and right (R-) TPJ, and right posterior cerebellar Crus II.

The present results indicate that FC changes affect a function-specific mentalizing network in patients affected by cerebellar damage. In particular, they allow to better clarify functional alteration mechanisms driven by the cerebellar damage associated with SCA2 suggesting that selective cortico-cerebellar functional disconnections may underlie patients’ social impairment in domain-specific complex and abstract forms of social functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clausi S, Lupo M, Olivito G, Siciliano L, Contento MP, Aloise F, et al. Depression disorder in patients with cerebellar damage: awareness of the mood state. J Affect Disord. 2019a;245:386–93.

    Article  PubMed  Google Scholar 

  2. Clausi S, Olivito G, Lupo M, Siciliano L, Bozzali M, Leggio M. The cerebellar predictions for social interactions: theory of mind abilities in patients with degenerative cerebellar atrophy. Front Cell Neurosci. 2019b;12:510.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leggio M, Olivito G. Topography of the cerebellum in relation to social brain regions and emotions. Handb Clin Neurol. 2018;154:71–84 Review.

    Article  PubMed  Google Scholar 

  4. Lupo M, Olivito G, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. The cerebellar topography of attention sub-components in spinocerebellar ataxia type 2. Cortex. 2018a;108:35–49.

    Article  PubMed  Google Scholar 

  5. Lupo M, Olivito G, Siciliano L, Masciullo M, Molinari M, Cercignani M, et al. Evidence of cerebellar involvement in the onset of a manic state. Front Neurol. 2018b;9:774.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lupo M, Olivito G, Siciliano L, Masciullo M, Bozzali M, Molinari M, et al. Development of a psychiatric disorder linked to cerebellar lesions. Cerebellum. 2018c;17(4):438–46.

    Article  PubMed  Google Scholar 

  7. Clausi S, Iacobacci C, Lupo M, Olivito G, Molinari M, Leggio M. The role of the cerebellum in unconscious and conscious processing of emotions: a review. Applied Sciences (Switzerland). 2017;7(5):521 Review.

    Article  Google Scholar 

  8. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141:248–70.

    Article  PubMed  Google Scholar 

  9. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–86.

    Article  PubMed  Google Scholar 

  10. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mar RA. The neural bases of social cognition and story comprehension. Annu Rev Psychol. 2011;62:103–34.

    Article  PubMed  Google Scholar 

  12. Calder AJ, Lawrence AD, Young AW. Neuropsychology of fear and loathing. Nat Rev Neurosci. 2001;2:352–63.

    Article  CAS  PubMed  Google Scholar 

  13. Kipps CM, Duggins AJ, McCusker EA, Calder AJ. Disgust and happiness recognition correlate with anteroventral insula and amygdala volume respectively in preclinical Huntington’s disease. J Cogn Neurosci. 2007;19:1206–17.

    Article  CAS  PubMed  Google Scholar 

  14. Biswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 1997;10:165–70.

    Article  CAS  PubMed  Google Scholar 

  15. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Krienen FM, Buckner RL. Segregated frontocerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  19. Olivito G, Lupo M, Laghi F, Clausi S, Baiocco R, Cercignani M, et al. Lobular patterns of cerebellar resting-state connectivity in adults with autism spectrum disorder. Eur J Neurosci. 2018a;47(6):729–35.

    Article  PubMed  Google Scholar 

  20. Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017a;16:283–92.

    Article  PubMed  Google Scholar 

  21. Khan AJ, Nair A, Keown CL, Dakto MC, Lincoln AJ, Muller RA. Cerebro-cerebellar resting state functional connectivity in children and adolescents with autism spectrum disorder. Biol Psychiatry. 2015;78:625–34.

    Article  PubMed  PubMed Central  Google Scholar 

  22. D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9:408 Review.

    PubMed  PubMed Central  Google Scholar 

  23. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72.

    Article  PubMed  Google Scholar 

  24. Van Overwalle F, D’aes T, Mariën P. Social cognition and the cerebellum: a meta-analytic connectivity analysis. Hum Brain Map. 2015;36:5137–54.

    Article  Google Scholar 

  25. Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage. 2016;124:248–55.

    Article  PubMed  Google Scholar 

  26. Van Overwalle F, Van de Steen F, Mariën P. Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cogn Affect Behav Neurosci. 2019a;19(1):211–23.

    Article  PubMed  Google Scholar 

  27. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.

    Article  CAS  PubMed  Google Scholar 

  28. Giacondo F, Curcio G. Spinocerebellar ataxia: a critical review of cognitive and socio-cognitive deficits. Int J Neurosci. 2018;128(2):182–91.

    Article  Google Scholar 

  29. Zalensky A, Fornito A, Bullmore ET. Network-based statistic, identifying differences in brain networks. Neuroimage. 2010;53:1197–207.

    Article  Google Scholar 

  30. Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, et al. Brain structural damage in spinocerebellar ataxia type 2. A voxel-based morphometry study. Mov Disord. 2008;23(6):899–903.

    Article  PubMed  Google Scholar 

  31. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2),: morphometric analyses in 11 autopsies. Acta Neuropathol (Berl). 1999;97:306–10.

    Article  CAS  Google Scholar 

  32. Iwabuchi K, Tsuchiya K, Uchihara T, Yagishita S. Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. Rev Neurol (Paris). 1999;155:255–70.

    CAS  Google Scholar 

  33. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.

    Article  CAS  PubMed  Google Scholar 

  34. Wechsler D, Wais R. Wechsler Adult Intelligence Scale Revised. Firenze: Organizzazioni Speciali; 1981.

    Google Scholar 

  35. Orsini A, Laicardi C. WAIS-R-Contributo alla Taratura Italiana. Firenze: Organizzazioni Speciali; 1997.

    Google Scholar 

  36. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol. 2018b;265(3):597–606.

    Article  CAS  PubMed  Google Scholar 

  37. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. Microstructural MRI basis of the cognitive functions in patients with spinocerebellar ataxia type 2. Neuroscience. 2017b;366:44–53.

    Article  CAS  PubMed  Google Scholar 

  38. Brett M, Anton JL, Valabregue R, Poline JB. Region of interest analysis using an SPM toolbox [abstract] Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-ROM in NeuroImage Vol 16, No 2.

  39. Serra L, Cercignani M, Bruschini M, Cipolotti L, Mancini M, Silvestri G, Petrucci A, Bucci E, Antonini G, Licchelli L, Spanò B, Giacanelli M, Caltagirone C, Meola G, Bozzali M. “I know that you know that I know”, neural substrates associated with social cognition deficits in DM1 patients. PLoS One 2016;11(6).

  40. Xia M, Wang J, He Y. BrainNet Viewer, a network visualization tool for human brain connectomics. PLoS One. 2013;8.

  41. D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar grey matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Allen G. The cerebellum in autism. Clinical Neuropsychiatry. 2005;2(6):321–37.

    Google Scholar 

  43. Fatemi SH, Halt AR. stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebella cortices. Biological Psychiatry. 2002;52(8):805–10.

    Article  CAS  PubMed  Google Scholar 

  44. Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123:836–44.

    Article  PubMed  Google Scholar 

  45. Courchesne E, Townsend J, Saitoh O. The brain in infantile autism: posterior fossa structures are abnormal. Neurology. 1994;44:214–23.

    Article  CAS  PubMed  Google Scholar 

  46. Van Overwalle F, Manto M, Leggio M, Delgado-García JM. The sequencing process generated by the cerebellum crucially contributes to social interactions. Med Hypothesis. 2019;128:33–42.

    Article  Google Scholar 

  47. Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA), types 1,2,3, and 6. Cerebellum. 2010;9:433–42.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260:3134–43.

    Article  PubMed  Google Scholar 

  49. Van Overwalle F. Social cognition and the brain: a meta-analysis. Hum BrainMapp. 2009;30:829–58.

    Google Scholar 

  50. Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev. 2014;42:9–34.

    Article  PubMed  Google Scholar 

  51. Saxe R, Powell LJ. It’s the thought that counts: specific brain regions for one component of theory of mind. Psychological Science. 2006;17:692–9.

    Article  PubMed  Google Scholar 

  52. Saxe R, Wexler A. Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia. 2005;43:1391–9.

    Article  PubMed  Google Scholar 

  53. Ma N, Vandekerckhove M, Van Hoeck N, Van Overwalle F. Distinct recruitment of temporo-parietal junction and medial prefrontal cortex in behavior understanding and trait identification. Soc Neurosci. 2012;7(6):591–605.

    Article  PubMed  Google Scholar 

  54. Harris LT, Todorov A, Fiske ST. Attributions on the brain: neuro-imaging dispositional inferences, beyond theory of mind. NeuroImage. 2005;28:763–9.

    Article  PubMed  Google Scholar 

  55. Saxe R. Uniquely human social cognition. Current Opinion in Neurobiology. 2006;16:235–9.

    Article  CAS  PubMed  Google Scholar 

  56. Decety J, Sommerville JA. Shared representations between self and other: a social cognitive neuroscience view. Trends Cogn Sci. 2003;7(12):527–33.

    Article  PubMed  Google Scholar 

  57. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain J Neurol. 2006;129(Pt 3):564–83.

    Article  Google Scholar 

  58. Raichle EM, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the default system of the brain. Conscious Cogn. 2008;17:457–67.

    Article  PubMed  Google Scholar 

  60. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    Article  CAS  PubMed  Google Scholar 

  61. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Olivito G, Cercignani M, Lupo M, Iacobacci C, Clausi S, Romano S, et al. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: a network based statistics analysis. Neuroimage Clin. 2017c;14:719–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  65. Kawai Y, Suenaga M, Watanabe H, Sobue G. Cognitive impairment in spinocerebellar degeneration. Eur Neurol. 2009;61:257–68.

    Article  CAS  PubMed  Google Scholar 

  66. Van Overwalle F, De Coninck S, Heleven E, Perrotta G, Taib NOB, Manto M, et al. The role of the cerebellum in reconstructing social action sequences: a pilot study. Soc Cogn Affect Neurosci. 2019b;14(5):549–58.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Filip P, Gallea C, Lehéricy S, Lungu O, Bareš M. Neural Scaffolding as the foundation for stable performance of aging cerebellum. Cerebellum. 2019;18(3):500–10.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was partially supported by the Italian Ministry of Health (Ricerca Corrente). This work was financially supported by the Ministry of Education, Universities and Research (MIUR) to Maria Leggio (Grant Number RM11715C7E67E525) and by the Italian Ministry of Health to Silvia Clausi (Grant Number GR-2013-02354888).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giusy Olivito.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivito, G., Siciliano, L., Clausi, S. et al. Functional Changes of Mentalizing Network in SCA2 Patients: Novel Insights into Understanding the Social Cerebellum. Cerebellum 19, 235–242 (2020). https://doi.org/10.1007/s12311-019-01081-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01081-x

Keywords

Navigation