Skip to main content
Log in

The Relationships Between Ataxia and Cognition in Spinocerebellar Ataxia Type 2

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The clinical spectrum of spinocerebellar ataxia type 2 includes motor manifestations and cognitive disturbances in executive functions, memory, and visuoconstructive skills. The relationships between severity of motor disturbances and altered cognition are poorly known. In this study, we assessed patients with spinocerebellar ataxia type 2 and age- and sex-matched healthy control subjects by a test battery including the Mini-mental State Examination, the Wisconsin Card Sorting test, and the Wechsler Memory Scale-Revised. The correlation between severity of motor ataxia (as assessed by a validated and widely used severity scale, the SARA scale, and by an objective automated computerized system of gait analysis) and altered cognition was then evaluated by Spearman correlation analysis. Patients performed worse than healthy controls in almost all administered neuropsychological tests. Nevertheless, only global intellectual abilities and executive functions significantly correlated with the overall severity of ataxia as assessed by the SARA scale, and impaired executive functions alone correlated with performance on several spatio-temporal gait analysis parameters. Our findings would probably suggest a prominent influence of executive functions on motor abilities in patients with spinocerebellar ataxia type 2 and raise the possibility that cognitive pharmaceutical or rehabilitative interventions may be of benefit in the management of motor problems in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, et al. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol. 2004;61(5):727–33.

    Article  PubMed  Google Scholar 

  2. Lastres-Becker I, Rüb U, Auburger G. Spinocerebellar ataxia 2 (SCA2). Cerebellum. 2008;7(2):115–24. https://doi.org/10.1007/s12311-008-0019-y Review.

    Article  CAS  PubMed  Google Scholar 

  3. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94. https://doi.org/10.1016/S1474-4422(10)70183-6.

    Article  CAS  PubMed  Google Scholar 

  4. Velázquez-Pérez L, Rodríguez-Labrada R, García-Rodríguez JC, Almaguer-Mederos LE, Cruz-Mariño T, Laffita-Mesa JM. A comprehensive review of spinocerebellar ataxia type 2 in Cuba. Cerebellum. 2011;10(2):184–98. https://doi.org/10.1007/s12311-011-0265-2.

    Article  PubMed  Google Scholar 

  5. Auburger GWJ. Spinocerebellar ataxia type 2. Handb Clin Neurol. 2012;103:423–36.

    Article  PubMed  Google Scholar 

  6. Manto M-U. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2–6.

    Article  CAS  PubMed  Google Scholar 

  7. Bürk K, Stevanin G, Didierjean O, Cancel G, Trottier Y, Skalej M, et al. Clinical and genetic analysis of three German kindreds with autosomal dominant cerebellar ataxia type I linked to the SCA2 locus. J Neurol. 1997;244(4):256–61.

    Article  PubMed  Google Scholar 

  8. Cancel G, Dürr A, Didierjean O, Imbert G, Bürk K, Lezin A, et al. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet. 1997;6(5):709–15.

    Article  CAS  PubMed  Google Scholar 

  9. Dürr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain. 1995;118(Pt 6):1573–81.

    Article  PubMed  Google Scholar 

  10. Storey E, Forrest SM, Shaw JH, Mitchell P, Gardner RJ. Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol. 1999;56(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  11. Bürk K, Globas C, Bösch S, Gräber S, Abele M, Brice A, et al. Cognitive deficits in spinocerebellar ataxia 2. Brain. 1999;122(Pt 4):769–77.

    Article  PubMed  Google Scholar 

  12. Gambardella A, Annesi G, Bono F, Spadafora P, Valentino P, Pasqua AA, et al. CAG repeat length and clinical features in three Italian families with spinocerebellar ataxia type 2 (SCA2): early impairment of Wisconsin Card Sorting Test and saccade velocity. J Neurol. 1998;245(10):647–52.

    Article  CAS  PubMed  Google Scholar 

  13. Le Pira F, Zappalà G, Saponara R, Domina E, Restivo D, Reggio E, et al. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201:53–7.

    Article  PubMed  Google Scholar 

  14. Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260(12):3134–43.

    Article  PubMed  Google Scholar 

  15. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15. https://doi.org/10.1016/j.neuron.2013.10.044 Review.

    Article  CAS  PubMed  Google Scholar 

  16. Hernandez-Castillo CR, Galvez V, Mercadillo RE, Díaz R, Yescas P, Martinez L, et al. Functional connectivity changes related to cognitive and motor performance in spinocerebellar ataxia type 2. Mov Disord. 2015;30(10):1391–9. https://doi.org/10.1002/mds.26320 Epub 2015 Aug 8.

    Article  PubMed  Google Scholar 

  17. Hernandez-Castillo CR, Vaca-Palomares I, Galvez V, Campos-Romo A, Diaz R, Fernandez-Ruiz J. Cognitive deficits correlate with white matter deterioration in spinocerebellar ataxia type 2. J Int Neuropsychol Soc. 2016;22(4):486–91. https://doi.org/10.1017/S1355617716000084 Epub 2016 Feb 18.

    Article  PubMed  Google Scholar 

  18. Mercadillo RE, Galvez V, Díaz R, Hernández-Castillo CR, Campos-Romo A, Boll MC, et al. Parahippocampal gray matter alterations in spinocerebellar ataxia type 2 identified by voxel based morphometry. J Neurol Sci. 2014;347(1-2):50–8. https://doi.org/10.1016/j.jns.2014.09.018 Epub 2014 Sep 19.

    Article  PubMed  Google Scholar 

  19. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol. 2018;265(3):597–606. https://doi.org/10.1007/s00415-018-8738-6 Epub 2018 Jan 22.

    Article  CAS  PubMed  Google Scholar 

  20. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. Microstructural MRI basis of the cognitive functions in patients with spinocerebellar ataxia type 2. Neuroscience. 2017;366:44–53. https://doi.org/10.1016/j.neuroscience.2017.10.007 Epub 2017 Oct 12.

    Article  CAS  PubMed  Google Scholar 

  21. Olivito G, Cercignani M, Lupo M, Iacobacci C, Clausi S, Romano S, et al. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: a network based statistics analysis. Neuroimage Clin. 2017;14:719–25. https://doi.org/10.1016/j.nicl.2017.03.009 eCollection 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindsay E, Storey E. Cognitive changes in the spinocerebellar ataxias due to expanded polyglutamine tracts: a survey of the literature. Brain Sci. 2017;14:7(7).

    Google Scholar 

  23. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248–70. https://doi.org/10.1093/brain/awx317.

    Article  PubMed  Google Scholar 

  24. Amboni M, Barone P, Hausdorff JM. Cognitive contributions to gait and falls: evidence and implications. Mov Disord. 2013;28(11):1520–33. https://doi.org/10.1002/mds.25674 Review.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Morris R, Lord S, Bunce J, Burn D, Rochester L. Gait and cognition: mapping the global and discrete relationships in ageing and neurodegenerative disease. Neurosci Biobehav Rev. 2016;64:326–45. https://doi.org/10.1016/j.neubiorev.2016.02.012 Epub 2016 Feb 23.

    Article  PubMed  Google Scholar 

  26. Kish SJ, el-Awar M, Stuss D, Nobrega J, Currier R, Aita JF, et al. Neuropsychological test performance in patients with dominantly inherited spinocerebellar ataxia: relationship to ataxia severity. Neurology. 1994;44(9):1738–46.

    Article  CAS  PubMed  Google Scholar 

  27. Rodríguez-Labrada R, Velázquez-Pérez L, Aguilera-Rodríguez R, Seifried-Oberschmidt C, Peña-Acosta A, Canales-Ochoa N, et al. Executive deficit in spinocerebellar ataxia type 2 is related to expanded CAG repeats: evidence from antisaccadic eye movements. Brain Cogn. 2014;91:28–34. https://doi.org/10.1016/j.bandc.2014.07.007 Epub 2014 Sep 3.

    Article  PubMed  Google Scholar 

  28. Vaca-Palomares I, Díaz R, Rodríguez-Labrada R, Medrano-Montero J, Vázquez-Mojena Y, Velázquez-Pérez L, et al. Spinocerebellar ataxia type 2 neurodegeneration differentially affects error-based and strategic-based visuomotor learning. Cerebellum. 2013;12(6):848–55. https://doi.org/10.1007/s12311-013-0496-5.

    Article  CAS  PubMed  Google Scholar 

  29. Vaca-Palomares I, Díaz R, Rodríguez-Labrada R, Medrano-Montero J, Aguilera-Rodríguez R, Vázquez-Mojena Y, et al. Strategy use, planning, and rule acquisition deficits in spinocerebellar ataxia type 2 patients. J Int Neuropsychol Soc. 2015;21(3):214–20. https://doi.org/10.1017/S1355617715000132 Epub 2015 Mar 23.

    Article  PubMed  Google Scholar 

  30. Rodríguez-Labrada R, Velázquez-Pérez L, Ortega-Sánchez R, Peña-Acosta A, Vázquez-Mojena Y, Canales-Ochoa N, et al. Insights into cognitive decline in spinocerebellar ataxia type 2: a P300 event-related brain potential study. Cerebellum Ataxias. 2019;6:3. https://doi.org/10.1186/s40673-019-0097-2 eCollection 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  Google Scholar 

  32. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

  33. Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtiss G. Wisconsin card sorting test (WCST) CV-64. Psychological Assessment Resources: Odessa Fla; 1993.

    Google Scholar 

  34. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.

    Article  CAS  PubMed  Google Scholar 

  35. Ferrigno G, Pedotti A. ELITE: a digital dedicated hardware system for movement analysis via real-time TV signal processing. IEEE Trans Biomed Eng. 1985;32:943–50.

    Article  CAS  PubMed  Google Scholar 

  36. Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10:575–87.

    Article  Google Scholar 

  37. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60. https://doi.org/10.1007/s11065-010-9142-x. Epub 2010 Sep 7 Review.

    Article  PubMed  Google Scholar 

  38. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44. https://doi.org/10.1016/j.cortex.2009.11.008 Epub 2010 Jan 11.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ilg W, Timmann D. Gait ataxia--specific cerebellar influences and their rehabilitation. Mov Disord. 2013;28(11):1566–75. https://doi.org/10.1002/mds.25558.

    Article  PubMed  Google Scholar 

  40. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15(3):369–91. https://doi.org/10.1007/s12311-015-0687-3 Review.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 1999;97:306–10.

    Article  CAS  PubMed  Google Scholar 

  42. Feng L, Chen DB, Hou L, Huang LH, Lu SY, Liang XL. etal. Cognitive impairment in native Chinese with spinocerebellar ataxia type 3. Eur Neurol. 2014;71(5-6):262–70. https://doi.org/10.1159/000357404 Epub 2014 Feb 12.

    Article  PubMed  Google Scholar 

  43. Cooper FE, Grube M, Elsegood KJ, Welch JL, Kelly TP, Chinnery PF, et al. The contribution of the cerebellum to cognition in spinocerebellar ataxia type 6. Behav Neurol. 2010;23(1-2):3–15. https://doi.org/10.3233/BEN-2010-0265.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Roeske S, Filla I, Heim S, Amunts K, Helmstaedter C, Wüllner U, et al. Progressive cognitive dysfunction in spinocerebellar ataxia type 3. Mov Disord. 2013;28(10):1435–8. https://doi.org/10.1002/mds.25512 Epub 2013 Jun 4.

    Article  PubMed  Google Scholar 

  45. Chirino A, Hernandez-Castillo CR, Galvez V, Contreras A, Diaz R, Beltran-Parrazal L, et al. Motor and cognitive impairments in spinocerebellar ataxia type 7 and its correlations with cortical volumes. Eur J Neurosci. 2018;48(10):3199–211. https://doi.org/10.1111/ejn.14148 Epub 2018 Sep 26.

    Article  PubMed  Google Scholar 

  46. Moro A, Teive HAG. Cognitive impairment in spinocerebellar ataxia type 10. Dement Neuropsychol. 2016;10(4):310–4. https://doi.org/10.1590/s1980-5764-2016dn1004009.

    Article  PubMed  PubMed Central  Google Scholar 

  47. van Iersel MB, Kessels RP, Bloem BR, Verbeek AL, Olde Rikkert MG. Executive functions are associated with gait and balance in community-living elderly people. J Gerontol A Biol Sci Med Sci. 2008;63(12):1344–9.

    Article  PubMed  Google Scholar 

  48. Liu-Ambrose T, Ahamed Y, Graf P, Feldman F, Robinovitch SN. Older fallers with poor working memory overestimate their postural limits. Arch Phys Med Rehabil. 2008;89(7):1335–40. https://doi.org/10.1016/j.apmr.2007.11.052.

    Article  PubMed  Google Scholar 

  49. Segev-Jacubovski O, Herman T, Yogev-Seligmann G, Mirelman A, Giladi N, Hausdorff JM. The interplay between gait, falls and cognition: can cognitive therapy reduce fall risk? Expert Rev Neurother. 2011;11(7):1057–75. https://doi.org/10.1586/ern.11.69 Review.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Auriel E, Hausdorff JM, Herman T, Simon ES, Giladi N. Effects of methylphenidate on cognitive function and gait in patients with Parkinson’s disease: a pilot study. Clin Neuropharmacol. 2006;29:15–7 PubMed: 16518128.

    Article  CAS  PubMed  Google Scholar 

  51. Litvinenko IV, Odinak MM, Mogil’naya VI, Emelin AY. Efficacy and safety of galantamine (reminyl) for dementia in patients with Parkinson’s disease (an open controlled trial). Neurosci Behav Physiol. 2008;38:937–45 PubMed: 18975103.

    Article  CAS  PubMed  Google Scholar 

  52. Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J Gerontol A Biol Sci Med Sci. 2011;66:234–40 PubMed: 21106702.

    Article  PubMed  Google Scholar 

  53. Assal F, Allali G, Kressig RW, Herrmann FR, Beauchet O. Galantamine improves gait performance in patients with Alzheimer’s disease. J Am Geriatr Soc. 2008;56:946–7 PubMed: 18454755.

    Article  PubMed  Google Scholar 

  54. Schwenk M, Zieschang T, Oster P, Hauer K. Dual-task performances can be improved in patients with dementia: a randomized controlled trial. Neurology. 2010;74:1961–8. Largest study to date that examined the effects of dual-task training on gait. The results provide Class II evidence of its utility among patients with mild-to-moderate dementia PubMed: 20445152.

    Article  PubMed  Google Scholar 

  55. Ben-Itzhak R, Giladi N, Gruendlinger L, Hausdorff JM. Can methylphenidate reduce fall risk in community-living older adults? A double-blind, single-dose cross-over study. J Am Geriatr Soc. 2008;56:695–700. The positive effects of an attention-enhancing drug are documented in this study among older adults PubMed: 18266665.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Silsupadol P, Lugade V, Shumway-Cook A, et al. Training-related changes in dual-task walking performance of elderly persons with balance impairment: a double-blind, randomized controlled trial. Gait Posture. 2009;29:634–9 PubMed: 19201610.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li KZ, Roudaia E, Lussier M, Bherer L, Leroux A, McKinley PA. Benefits of cognitive dual-task training on balance performance in healthy older adults. J Gerontol A Biol Sci Med Sci. 2010;65:1344–52 PubMed: 20837662.

    Article  PubMed  Google Scholar 

  58. Verghese J, Mahoney J, Ambrose AF, Wang C, Holtzer R. Effect of cognitive remediation on gait in sedentary seniors. J Gerontol A Biol Sci Med Sci. 2010;65:1338–43 PubMed: 20643703.

    Article  PubMed  Google Scholar 

  59. Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet. 1997;60(4):842–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, et al. Gait pattern in inherited cerebellar ataxias. Cerebellum. 2012;11(1):194–211. https://doi.org/10.1007/s12311-011-0296-8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Fabio Gigante.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigante, A.F., Lelli, G., Romano, R. et al. The Relationships Between Ataxia and Cognition in Spinocerebellar Ataxia Type 2. Cerebellum 19, 40–47 (2020). https://doi.org/10.1007/s12311-019-01079-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01079-5

Keywords

Navigation