Skip to main content
Log in

Selective Forces Related to Spinocerebellar Ataxia Type 2

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 2 (SCA2) is caused by an unstable expanded CAG repeat tract (CAGexp) at ATXN2. Although prone to selective forces such as anticipation, SCA2 frequency seems to be stable in populations. Our aim was to estimate reproductive success, segregation patterns, and role of anticipation in SCA2. Adult subjects from families with molecular diagnosis provided data about all his/her relatives. Affected and unaffected sibs older than 65.7 years of age were used to estimate reproductive success and segregation patterns. Twenty-one SCA2 families were studied, including 1017 individuals (164 affected) who were born from 1840 to 2012. The median number of children of the non-carriers and carriers, among 99 subjects included in the reproductive success analysis, were 2 and 3 (p < 0.025), respectively. Therefore, the reproductive success of carriers was 1.5. There were 137 non-carriers (59.6%) and 93 carriers (40.4%) (p = 0.04), among subjects included in the segregation analysis. Age at onset across generations pointed to anticipation as a frequent phenomenon. We raised evidence in favor of increased reproductive success related to the carrier state at ATXN2, and segregation distortion favoring normal alleles. Since majority of normal alleles analyzed carried 22 repeats, we propose that this distortion segregation can be related to the high frequency of this allele in human chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pulst SM. Spinocerebellar ataxia type 2. GeneReviews® [Internet].2015. https://www.ncbi.nlm.nih.gov/books/NBK1275/

  2. Laffita-Mesa JM, Velázquez-Pérez LC, Santos Falcón N, et al. Unexpanded and intermediate CAG polymorphisms at the SCA2 locus (ATXN2) in the Cuban population: evidence about the origin of expanded SCA2 alleles. European Journal of Human Genetics. 2012;20(1):41–9. https://doi.org/10.1038/ejhg.2011.15.

    Article  CAS  PubMed  Google Scholar 

  3. Montcel S.T, Durr A, Bauer P, et al. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 2014. Pages 2444–2455.

  4. Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet. 1997;60(4):842–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Matilla-Dueñas A, Sánchez I, Corral-Juan M, Dávalos A, Alvarez R, Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2010 Jun;9(2):148–66.

    Article  CAS  PubMed  Google Scholar 

  6. Magaña JJ, Velázquez-Pérez L, Cisneros B. Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol. 2013;47:90–104.

    Article  CAS  PubMed  Google Scholar 

  7. Auburger GW. Spinocerebellar ataxia type 2. Handb Clin Neurol. 2012;103:423–36.

    Article  PubMed  Google Scholar 

  8. Costanzi-Porrini S, Tessarolo D, Abbruzzese C, Liguori M, Ashizawa T, Giacanelli M. An interrupted 34-CAG repeat SCA-2 allele in patients with sporadic spinocerebellar ataxia. Neurology. 2000 Jan 25;54(2):491–3.

    Article  CAS  PubMed  Google Scholar 

  9. Babovic-Vuksanovic D, Snow K, Patterson MC, Michels VV. Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion. Am J Med Genet. 1998;79:383–7.

    Article  CAS  PubMed  Google Scholar 

  10. Abdel-Aleem A, Zaki MS. Spinocerebellar ataxia type 2 (SCA2) in an Egyptian family presenting with polyphagia and marked CAG expansion in infancy. J Neurol. 2008;255:413–9.

    Article  CAS  PubMed  Google Scholar 

  11. Di Fabio R, Santorelli F, Bertini E, et al. Infantile childhood onset of spinocerebellar ataxia type 2. Cerebellum. 2012;11:526–30.

    Article  PubMed  Google Scholar 

  12. Figueroa KP, Coon H, Santos N, et al. Genetic analysis of age at onset variation in spinocerebellar ataxia type 2. Neurology: Genetics. 2017;3(3):e155.

    CAS  Google Scholar 

  13. Almaguer-Mederos LE, Mesa JML, González-Zaldívar Y, et al. Factors associated with ATXN2 CAG/CAA repeat intergenerational instability in spinocerebellar ataxia type 2. Clin Genet. 2018:14.

  14. Frontali M, Sabbadini G, Novelletto A, et al. Genetic fitness in Huntington’s Disease and Spinocerebellar Ataxia 1: a population genetics model for CAG repeat expansions. 1996.

  15. Prestes PR, Saraiva-Pereira ML, Silveira I, Sequeiros J, Jardim LB. Machado Joseph disease enhances genetic fitness: a comparison between affected and unaffected women and between MJD and the general population. Ann Hum Genet. 2008;72:57–64.

    CAS  PubMed  Google Scholar 

  16. Souza GN, Kersting N, Krum-Santos AC, Santos ASP, Furtado GV, Pacheco D, et al. Spinocerebellar ataxia type 3/Machado-Joseph disease: segregation patterns and factors influencing instability of expanded CAG transmissions. Clin Genet. 2016 Aug;90(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  17. Platonov FA, Tyryshkin K, Tikhonov DG, Neustroyeva TS, Sivtseva TM, Yakovleva NV, et al. Genetic fitness and selection intensity in a population affected with high-incidence spinocerebellar ataxia type 1. Neurogenetics. 2016;17(3):179–85.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pereira FS, Monte TL, Locks-Coelho LD. Genes and mitochondrial polymorphism A10398G did not modify age at onset in spinocerebellar ataxia type 2 patients from South America. Cerebellum. 2015 Dec;14(6):728–30.

    Article  PubMed  Google Scholar 

  19. Socal MP, Emmel VE, Rieder CR. Intrafamilial variability of Parkinson phenotype in SCAs: novel cases due to SCA2 and SCA3 expansions. Parkinsonism Relat Disord. 2009;15:374–8.

    Article  CAS  PubMed  Google Scholar 

  20. de Castilhos RM, Furtado GV, Gheno TC, et al. Spinocerebellar ataxias in Brazil--frequencies and modulating effects of related. Cerebellum. 2014;13:17–28.

  21. Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al. A subcellular map of the human proteome. Science. 2017;356:eaal3321.

    Article  CAS  PubMed  Google Scholar 

  22. Human Protein Atlas available from www.proteinatlas.org.

  23. Lorenzetti D, Bohlega S, Zoghbi HY. The expansion of the CAG repeat in ataxin-2 is a frequent cause of autosomal dominant spinocerebellar ataxia. Neurology. Oct 1997;49(4):1009–13.

    Article  CAS  PubMed  Google Scholar 

  24. Mao R, Aylsworth AS, Potter N, Wilson WG, Breningstall G, Wick MJ, et al. Childhood-onset ataxia: testing for large CAG-repeats in SCA2 and SCA7. Am J Med Genet. 2002;110:338–45.

    Article  PubMed  Google Scholar 

  25. Pulst S-M, Nechiporuk A, Nechiporuk T, Gispert S, Chen X-N, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76. https://doi.org/10.1038/ng1196-269.

    Article  CAS  PubMed  Google Scholar 

  26. McMurray CT. Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet. 2010;11(11):786–99. https://doi.org/10.1038/nrg2828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the individuals who agreed to participate in this study.

Funding

This work was supported by FIPE-HCPA – Fundo de Incentivo à Pesquisa do Hospital de Clínicas de Porto Alegre – Project GPPG HCPA 16-320. EPM, GVF, MLSP and LBJ were supported by CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bannach Jardim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Supplemental Figure 1

- Histogram showing the relationship between the children’s year of birth and year of onset of symptoms in the affected parent. Onset of symptoms is represented by “0” (zero), negative numbers represent the number of years before the onset of symptoms, while positive numbers represent the number of years after the onset of symptoms in the affected parent. (PNG 90 kb)

High resolution image (TIF 325 kb)

Supplemental Figure 2

- Histogram describing the differences between ages at onset (delta-AO) of the affected individuals and their transmitting parents. Transmitting fathers were depicted as male transmissions; those of mothers were depicted as female transmissions. (PNG 72 kb)

High resolution image (TIF 1424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sena, L.S., Castilhos, R.M., Mattos, E.P. et al. Selective Forces Related to Spinocerebellar Ataxia Type 2. Cerebellum 18, 188–194 (2019). https://doi.org/10.1007/s12311-018-0977-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0977-7

Keywords

Navigation