Skip to main content

Advertisement

Log in

Far-infrared Radiation Improves Motor Dysfunction and Neuropathology in Spinocerebellar Ataxia Type 3 Mice

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine neurodegenerative disease resulting from the misfolding and accumulation of a pathogenic protein, causing cerebellar dysfunction, and this disease currently has no effective treatments. Far-infrared radiation (FIR) has been found to protect the viability of SCA3 cells by preventing mutant ataxin-3 protein aggregation and promoting autophagy. However, this possible treatment still lacks in vivo evidence. This study assessed the effect of FIR therapy on SCA3 in vivo by using a mouse model over 28 weeks. Control mice carried a healthy wild-type ATXN3 allele that had a polyglutamine tract with 15 CAG repeats (15Q), whereas SCA3 transgenic mice possessed an allele with a pathological polyglutamine tract with expanded 84 CAG (84Q) repeats. The results showed that the 84Q SCA3 mice displayed impaired motor coordination, balance abilities, and gait performance, along with the associated loss of Purkinje cells in the cerebellum, compared with the normal 15Q controls; nevertheless, FIR treatment was sufficient to prevent those defects. FIR significantly improved performance in terms of maximal contact area, stride length, and base support in the forepaws, hindpaws, or both. Moreover, FIR treatment supported the survival of Purkinje cells in the cerebellum and promoted the autophagy, as reflected by the induction of autophagic markers, LC3II and Beclin-1, concomitant with the reduction of p62 and ataxin-3 accumulation in cerebellar Purkinje cells, which might partially contribute to the rescue mechanism. In summary, our results reveal that FIR confers therapeutic effects in an SCA3 transgenic animal model and therefore has considerable potential for future clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype—a review. Clin Genet. 2016;90:305–14.

    Article  CAS  Google Scholar 

  2. Taroni F, DiDonato S. Pathways to motor incoordination: the inherited ataxias. Nat Rev Neurosci. 2004;5:641–55.

    Article  CAS  Google Scholar 

  3. Bird TD. Hereditary ataxia overview. 2016.

    Google Scholar 

  4. do Carmo Costa M, Paulson HL. Toward understanding Machado–Joseph disease. Prog Neurobiol. 2012;97:239–57.

    Article  Google Scholar 

  5. Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4:62–73.

    Article  CAS  Google Scholar 

  6. Seidel K, Siswanto S, Fredrich M, Bouzrou M, Brunt E, Leeuwen F, et al. Polyglutamine aggregation in Huntington’s disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation. Neuropathol Appl Neurobiol. 2016;42:153–66.

    Article  CAS  Google Scholar 

  7. Li X, Liu H, Fischhaber PL, Tang T-S. Toward therapeutic targets for SCA3: insight into the role of Machado–Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog Neurobiol. 2015;132:34–58.

    Article  CAS  Google Scholar 

  8. Fan H-C, Ho L-I, Chi C-S, Chen S-J, Peng G-S, Chan T-M, et al. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant. 2014;23:441–58.

    Article  Google Scholar 

  9. Piccioni F, Pinton P, Simeoni S, Pozzi P, Fascio U, Vismara G, et al. Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J. 2002;16:1418–20.

    Article  CAS  Google Scholar 

  10. Vatansever F, Hamblin MR. Far infrared radiation (FIR): its biological effects and medical applications. Photonics Lasers Med. 2012;1:255–66.

    Google Scholar 

  11. Shui S, Wang X, Chiang JY, Zheng L. Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: a systematic review. Exp Biol Med. 2015;240:1257–65.

    Article  CAS  Google Scholar 

  12. Johnstone DM, Moro C, Stone J, Benabid A-L, Mitrofanis J. Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front Neurosci. 2016;9:500.

    Article  Google Scholar 

  13. Yu SY, Chiu JH, Yang SD, Hsu YC, Lui WY, Wu CW. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol Photoimmunol Photomed. 2006;22:78–86.

    Article  CAS  Google Scholar 

  14. Ryotokuji K, Ishimaru K, Kihara K, Namiki Y, Hozumi N. Preliminary results of pinpoint plantar long-wavelength infrared light irradiation on blood glucose, insulin and stress hormones in patients with type 2 diabetes mellitus. Laser Ther. 2013;22:209–14.

    Article  Google Scholar 

  15. Wan Q, Yang S, Li L, Chu F. Effects of far infrared therapy on arteriovenous fistulas in hemodialysis patients: a meta-analysis. Ren Fail. 2017;39:613–22.

    Article  Google Scholar 

  16. Lin C-C, Liu X-M, Peyton K, Wang H, Yang W-C, Lin S-J, et al. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler Thromb Vasc Biol. 2008;28:739–45.

    Article  CAS  Google Scholar 

  17. Kihara T, Biro S, Imamura M, Yoshifuku S, Takasaki K, Ikeda Y, et al. Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. J Am Coll Cardiol. 2002;39:754–9.

    Article  Google Scholar 

  18. Chen C-H, Chen T-H, Wu M-Y, Chou T-C, Chen J-R, Wei M-J, et al. Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice. Sci Rep. 2017;7.

  19. Toyokawa H, Matsui Y, Uhara J, Tsuchiya H, Teshima S, Nakanishi H, et al. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med. 2003;228:724–9.

    Article  CAS  Google Scholar 

  20. Chiu H-W, Chen C-H, Chang J-N, Chen C-H, Hsu Y-H. Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy. J Mol Med. 2016;94:809–19.

    Article  CAS  Google Scholar 

  21. Bashar K, Healy D, Browne LD, Kheirelseid EA, Walsh MT, Clarke M, et al. Role of far infra-red therapy in dialysis arterio-venous fistula maturation and survival: systematic review and meta-analysis. PLoS One. 2014;9:e104931.

    Article  Google Scholar 

  22. Chen T-Y, Yang Y-C, Sha Y-N, Chou J-R, Liu B-S. Far-infrared therapy promotes nerve repair following end-to-end neurorrhaphy in rat models of sciatic nerve injury. Evid Based Complement Alternat Med. 2015;2015.

  23. Ervolino F, Gazze R. Far infrared wavelength treatment for low back pain: evaluation of a non-invasive device. Work. 2016;53:157–62.

    Article  Google Scholar 

  24. Yu Z, Liu N, Zhao J, Li Y, McCarthy TJ, Tedford CE, et al. Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation. Metab Brain Dis. 2015;30:491–6.

    Article  CAS  Google Scholar 

  25. Chang J-C, Wu S-L, Hoel F, Cheng Y-S, Liu K-H, Hsieh M, et al. Far-infrared radiation protects viability in a cell model of spinocerebellar ataxia by preventing polyQ protein accumulation and improving mitochondrial function. Sci Rep. 2016;6.

  26. Budini M, Buratti E, Morselli E, Criollo A. Autophagy and its impact on neurodegenerative diseases: new roles for TDP-43 and C9orf72. Front Mol Neurosci. 2017;10.

  27. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J-i, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.

    Article  CAS  Google Scholar 

  28. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.

    Article  CAS  Google Scholar 

  29. Cemal CK, Carroll CJ, Lawrence L, Lowrie MB, Ruddle P, Al-Mahdawi S, et al. YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet. 2002;11:1075–94.

    Article  CAS  Google Scholar 

  30. Chen X, Tang T-S, Tu H, Nelson O, Pook M, Hammer R, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008;28:12713–24.

    Article  CAS  Google Scholar 

  31. Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, et al. A rotarod test for evaluation of motor skill learning. J Neurosci Methods. 2010;189:180–5.

    Article  Google Scholar 

  32. Luong TN, Carlisle HJ, Southwell A, Patterson PH. Assessment of motor balance and coordination in mice using the balance beam. J Visual Exp. 2011.

  33. Wecker L, Engberg M, Philpot R, Lambert C, Kang C, Antilla J, et al. Neuronal nicotinic receptor agonists improve gait and balance in olivocerebellar ataxia. Neuropharmacology. 2013;73:75–86.

    Article  CAS  Google Scholar 

  34. Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy. Stroke. 2007;38:1843–9.

    Article  Google Scholar 

  35. Onofre I, Mendonça N, Lopes S, Nobre R, De Melo JB, Carreira IM, et al. Fibroblasts of Machado Joseph disease patients reveal autophagy impairment. Sci Rep. 2016;6.

  36. Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. elife. 2016;5:e12245.

    Article  Google Scholar 

  37. Cortes CJ, La Spada AR. Autophagy in polyglutamine disease: imposing order on disorder or contributing to the chaos? Mol Cell Neurosci. 2015;66:53–61.

    Article  CAS  Google Scholar 

  38. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36:585–95.

    Article  CAS  Google Scholar 

  39. Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain. 2009;133:93–104.

    Article  Google Scholar 

  40. Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I, Alves S, et al. Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado–Joseph disease. Brain. 2011;134:1400–15.

    Article  Google Scholar 

  41. Komatsu M, Waguri S, Koike M, Sou Y-s, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–63.

    Article  CAS  Google Scholar 

  42. Ramani B, Harris GM, Huang R, Seki T, Murphy GG, MdC C, et al. A knockin mouse model of spinocerebellar ataxia type 3 exhibits prominent aggregate pathology and aberrant splicing of the disease gene transcript. Hum Mol Genet. 2014;24:1211–24.

    Article  Google Scholar 

  43. Schilling K, Oberdick J, Rossi F, Baader SL. Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol. 2008;130:601–15.

    Article  CAS  Google Scholar 

  44. Xuan W, Vatansever F, Huang L, Hamblin MR. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J Biomed Opt. 2014;19:108003.

    Article  Google Scholar 

  45. Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chen Chang (Institute of Biomedical Sciences, Academia Sinica) for advice and assistance on preliminary experimental research.

Funding

This study was supported by the National Science Council (NSC 103-2314-B-371-005-; MOST 103-2320-B-371-001-).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou-Jen Kuo or Chin-San Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Shin-Wu Liu and Jui-Chih Chang are co first-authors

Electronic Supplementary Material

ESM 1

(DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SW., Chang, JC., Chuang, SF. et al. Far-infrared Radiation Improves Motor Dysfunction and Neuropathology in Spinocerebellar Ataxia Type 3 Mice. Cerebellum 18, 22–32 (2019). https://doi.org/10.1007/s12311-018-0936-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0936-3

Keywords

Navigation