Skip to main content
Log in

Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia

  • Consensus paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed:

  • The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia.

  • Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia.

  • Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia.

Overall points of consensus include:

  • Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems.

  • Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albanese A et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28(7):863–73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bhatia KP, Marsden CD. The behavioral and motor consequences of focal lesions of the basal ganglia in man. Brain. 1994;117:859–76.

    Article  PubMed  Google Scholar 

  3. Neychev VK et al. The functional neuroanatomy of dystonia. Neurobiol Dis. 2011;42(2):185–201.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prudente CN, Hess EJ, Jinnah HA. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience. 2014;260:23–35.

    Article  CAS  PubMed  Google Scholar 

  5. Malfait N, Sanger TD. Does dystonia always include co-contraction? A study of unconstrained reaching in children with primary and secondary dystonia. Exp Brain Res. 2007;176(2):206–16.

    Article  PubMed  Google Scholar 

  6. Yanagisawa N, Goto A. Dystonia musculorum deformans. Analysis with electromyography. J Neurol Sci. 1971;13(1):39–65.

    Article  CAS  PubMed  Google Scholar 

  7. Guehl D et al. Primate models of dystonia. Prog Neurobiol. 2009;87(2):118–31.

    Article  CAS  PubMed  Google Scholar 

  8. Wilson BK, Hess EJ. Animal models for dystonia. Mov Disord. 2013;28(7):982–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jinnah HA et al. Rodent models for dystonia research: characteristics, evaluation, and utility. Mov Disord. 2005;20(3):283–92.

    Article  CAS  PubMed  Google Scholar 

  10. Butler AB, Hodos W. Comparative vertebrate neuroanatomy: evolution and adaptation. 2nd ed. Hoboken, N.J: Wiley-Interscience; 2005. p. xxi–715.

    Book  Google Scholar 

  11. Lemon RN. Descending pathways in motor control. Annu Rev Neurosci. 2008;31:195–218.

    Article  CAS  PubMed  Google Scholar 

  12. Ericsson J et al. Striatal cellular properties conserved from lampreys to mammals. J Physiol. 2011;589(Pt 12):2979–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shakkottai VG. Physiologic changes associated with cerebellar dystonia. Cerebellum. 2014;13(5):637–44.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Filip P, Lungu OV, Bares M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol. 2013;124(7):1269–76.

    Article  PubMed  Google Scholar 

  15. Sadnicka A et al. The cerebellum in dystonia—help or hindrance? Clin Neurophysiol. 2012;123(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  16. Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia. Basal Ganglia. 2012;2:231–5.

    Article  Google Scholar 

  17. Zoons E et al. Structural, functional and molecular imaging of the brain in primary focal dystonia—a review. NeuroImage. 2011;56(3):1011–20.

    Article  CAS  PubMed  Google Scholar 

  18. Burke RE, Fahn S. Chlorpromazine methiodide acts at the vestibular nuclear complex to induce barrel rotation in the rat. Brain Res. 1983;288(1–2):273–81.

    Article  CAS  PubMed  Google Scholar 

  19. Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci. 2002;3(7):574–9.

    Article  CAS  PubMed  Google Scholar 

  20. Dang MT et al. Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia. Exp Neurol. 2005;196(2):452–63.

    Article  CAS  PubMed  Google Scholar 

  21. Tanabe LM, Martin C, Dauer WT. Genetic background modulates the phenotype of a mouse model of DYT1 dystonia. PLoS One. 2012;7(2):e32245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao Y, Sharma N, LeDoux MS. The DYT1 carrier state increases energy demand in the olivocerebellar network. Neuroscience. 2011;177:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song CH et al. Subtle microstructural changes of the cerebellum in a knock-in mouse model of DYT1 dystonia. Neurobiol Dis. 2014;62:372–80.

    Article  CAS  PubMed  Google Scholar 

  24. Liang CC et al. TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration. J Clin Invest. 2014;124(7):3080–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weisheit, C.E. and W.T. Dauer, A novel conditional knock-in approach defines molecular and circuit effects of the DYT1 dystonia mutation. Hum Mol Genet, 2015.

  26. Pappas SS et al. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. Elife. 2015;4:e08352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yokoi F et al. Motor deficits and hyperactivity in cerebral cortex-specific Dyt1 conditional knockout mice. J Biochem. 2008;143(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  28. Yokoi F et al. Motor deficits and decreased striatal dopamine receptor 2 binding activity in the striatum-specific Dyt1 conditional knockout mice. PLoS One. 2011;6(9):e24539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanabe LM et al. Primary dystonia: molecules and mechanisms. Nat Rev Neurol. 2009;5(11):598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.

    Article  CAS  PubMed  Google Scholar 

  31. Dum RP, Li C, Strick PL. Motor and nonmotor domains in the monkey dentate. Ann N Y Acad Sci. 2002;978:289–301.

    Article  PubMed  Google Scholar 

  32. Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27(40):10659–73.

    Article  CAS  PubMed  Google Scholar 

  33. Percheron G et al. The primate motor thalamus. Brain Res Brain Res Rev. 1996;22(2):93–181.

    Article  CAS  PubMed  Google Scholar 

  34. Hoshi E et al. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.

    Article  CAS  PubMed  Google Scholar 

  35. Chen CH et al. Short latency cerebellar modulation of the basal ganglia. Nat Neurosci. 2014;17(12):1767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A. 2010;107(18):8452–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.

    PubMed  Google Scholar 

  38. Sutton AC et al. Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats. Brain Struct Funct. 2015;220(6):3595–609.

    Article  PubMed  Google Scholar 

  39. Campbell DB, Hess EJ. Cerebellar circuitry is activated during convulsive episodes in the tottering (tg/tg) mutant mouse. Neuroscience. 1998;85(3):773–83.

    Article  CAS  PubMed  Google Scholar 

  40. Ulug AM et al. Cerebellothalamocortical pathway abnormalities in torsinA DYT1 knock-in mice. Proc Natl Acad Sci U S A. 2011;108(16):6638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen G et al. Low-frequency oscillations in the cerebellar cortex of the tottering mouse. J Neurophysiol. 2009;101(1):234–45.

    Article  PubMed  Google Scholar 

  42. Walter JT et al. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  43. Fremont R et al. Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci. 2014;34(35):11723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hisatsune C et al. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. Front Neural Circuits. 2013;7:156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Campbell DB, Hess EJ. L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol Pharmacol. 1999;55(1):23–31.

    CAS  PubMed  Google Scholar 

  46. LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol. 1993;120(2):302–10.

    Article  CAS  PubMed  Google Scholar 

  47. Calderon DP et al. The neural substrates of rapid-onset dystonia-parkinsonism. Nat Neurosci. 2011;14(3):357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neychev VK et al. The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain. 2008;131(Pt 9):2499–509.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Raike RS, Hess EJ, Jinnah HA. Dystonia and cerebellar degeneration in the leaner mouse mutant. Brain Res. 2015;1611:56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raike RS et al. Limited regional cerebellar dysfunction induces focal dystonia in mice. Neurobiol Dis. 2012;49C:200–10.

    Google Scholar 

  51. Fan X et al. Selective and sustained alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation in cerebellum induces dystonia in mice. J Pharmacol Exp Ther. 2012;340(3):733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pizoli CE et al. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci. 2002;22(17):7825–33.

    CAS  PubMed  Google Scholar 

  53. Alvarez-Fischer D et al. Prolonged generalized dystonia after chronic cerebellar application of kainic acid. Brain Res. 2012;1464:82–8.

    Article  CAS  PubMed  Google Scholar 

  54. Rose SJ et al. A new knock-in mouse model of l-DOPA-responsive dystonia. Brain. 2015;138(Pt 10):2987–3002.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cooper IS, Upton AR. Use of chronic cerebellar stimulation for disorders of disinhibition. Lancet. 1978;1(8064):595–600.

    Article  CAS  PubMed  Google Scholar 

  56. Bradnam LV et al. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sokal P et al. Deep anterior cerebellar stimulation reduces symptoms of secondary dystonia in patients with cerebral palsy treated due to spasticity. Clin Neurol Neurosurg. 2015;135:62–8.

    Article  PubMed  Google Scholar 

  58. Eidelberg D et al. Functional brain networks in DYT1 dystonia. Ann Neurol. 1998;44(3):303–12.

    Article  CAS  PubMed  Google Scholar 

  59. Le Ber I et al. Predominant dystonia with marked cerebellar atrophy: a rare phenotype in familial dystonia. Neurology. 2006;67(10):1769–73.

    Article  CAS  PubMed  Google Scholar 

  60. Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press ; 1958.675 p

    Google Scholar 

  61. Mottolese C et al. Mapping motor representations in the human cerebellum. Brain. 2013;136(Pt 1):330–42.

    Article  PubMed  Google Scholar 

  62. Nashold Jr BS, Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg. 1969;31(2):172–86.

    Article  PubMed  Google Scholar 

  63. Heiney SA et al. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci. 2014;34(6):2321–30.

    Article  PubMed  PubMed Central  Google Scholar 

  64. LeDoux MS. Animal models of dystonia: lessons from a mutant rat. Neurobiol Dis. 2011;42(2):152–61.

    Article  PubMed  Google Scholar 

  65. Xiao J, Ledoux MS. Caytaxin deficiency causes generalized dystonia in rats. Brain Res Mol Brain Res. 2005;141(2):181–92.

    Article  CAS  PubMed  Google Scholar 

  66. Fremont R, Tewari A, Khodakhah K. Aberrant Purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of rapid onset dystonia-parkinsonism. Neurobiol Dis. 2015;82:200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harries AM et al. Unilateral pallidal deep brain stimulation in a patient with dystonia secondary to episodic ataxia type 2. Stereotact Funct Neurosurg. 2013;91(4):233–5.

    Article  PubMed  Google Scholar 

  68. Hu, Y., et al., Identification of a novel nonsense mutation p.Tyr1957Ter of CACNA1A in a Chinese family with episodic ataxia 2. PLoS One, 2013. 8(2): p. e56362.

  69. Weisz CJ et al. Potassium channel blockers inhibit the triggers of attacks in the calcium channel mouse mutant tottering. J Neurosci. 2005;25(16):4141–5.

    Article  CAS  PubMed  Google Scholar 

  70. Alvina K, Khodakhah K. The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci. 2010;30(21):7258–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alvina K, Khodakhah K. KCa channels as therapeutic targets in episodic ataxia type-2. J Neurosci. 2010;30(21):7249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Starr PA et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. J Neurophysiol. 2005;93(6):3165–76.

    Article  PubMed  Google Scholar 

  73. Meunier S et al. Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation. Eur J Neurosci. 2012;35(6):975–86.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Castrop F et al. Basal ganglia-premotor dysfunction during movement imagination in writer's cramp. Mov Disord. 2012;27(11):1432–9.

    Article  PubMed  Google Scholar 

  75. Mure H et al. Deep brain stimulation of the thalamic ventral lateral anterior nucleus for DYT6 dystonia. Stereotact Funct Neurosurg. 2014;92(6):393–6.

    Article  PubMed  Google Scholar 

  76. Koy A et al. Young adults with dyskinetic cerebral palsy improve subjectively on pallidal stimulation, but not in formal dystonia, gait, speech and swallowing testing. Eur Neurol. 2014;72(5–6):340–8.

    Article  PubMed  Google Scholar 

  77. Volkmann J et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurol. 2014;13(9):875–84.

    Article  PubMed  Google Scholar 

  78. Ozelius LJ et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  79. LeDoux MS et al. Genotype-phenotype correlations in THAP1 dystonia: molecular foundations and description of new cases. Parkinsonism Relat Disord. 2012;18(5):414–25.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vemula SR et al. Role of Galpha(olf) in familial and sporadic adult-onset primary dystonia. Hum Mol Genet. 2013;22(12):2510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao Y et al. Neural expression of the transcription factor THAP1 during development in rat. Neuroscience. 2013;231:282–95.

    Article  CAS  PubMed  Google Scholar 

  82. Xiao J et al. Developmental expression of rat torsinA transcript and protein. Brain Res Dev Brain Res. 2004;152(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  83. Carbon M et al. Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study. Brain. 2010;133(Pt 3):690–700.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Jinnah HA, Hess EJ. A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum? Neurology. 2006;67(10):1740–1.

    Article  CAS  PubMed  Google Scholar 

  85. Perlmutter JS, Thach WT. Writer's cramp: questions of causation. Neurology. 2007;69(4):331–2.

    Article  PubMed  Google Scholar 

  86. LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord. 2003;18(1):60–9.

    Article  PubMed  Google Scholar 

  87. Waln O, LeDoux MS. Delayed-onset oromandibular dystonia after a cerebellar hemorrhagic stroke. Parkinsonism Relat Disord. 2010;16(9):623–5.

    Article  PubMed  Google Scholar 

  88. Prudente CN et al. Neuropathology of cervical dystonia. Exp Neurol. 2013;241:95–104.

    Article  CAS  PubMed  Google Scholar 

  89. LeDoux MS, Hurst DC, Lorden JF. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience. 1998;86(2):533–45.

    Article  CAS  PubMed  Google Scholar 

  90. Sawada K et al. Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. Acta Neurobiol Exp (Wars). 2009;69(1):138–45.

    Google Scholar 

  91. Zhang L et al. Altered dendritic morphology of Purkinje cells in Dyt1 DeltaGAG knock-in and purkinje cell-specific Dyt1 conditional knockout mice. PLoS One. 2011;6(3):e18357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hirasawa M et al. Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory synaptic function in the cerebellum. Mol Cell Neurosci. 2007;35(1):161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xiao J, Gong S, Ledoux MS. Caytaxin deficiency disrupts signaling pathways in cerebellar cortex. Neuroscience. 2007;144(2):439–61.

    Article  CAS  PubMed  Google Scholar 

  94. Charlesworth G et al. Mutations in HPCA cause autosomal-recessive primary isolated dystonia. Am J Hum Genet. 2015;96(4):657–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tzingounis AV et al. Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells. Neuron. 2007;53(4):487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Raike RS et al. Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy. Neurobiol Dis. 2013;50:151–9.

    Article  CAS  PubMed  Google Scholar 

  97. Maejima T et al. Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J Neurosci. 2013;33(12):5162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. LeDoux MS, Lorden JF. Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. Exp Brain Res. 2002;145(4):457–67.

    Article  PubMed  Google Scholar 

  99. Argyelan M et al. Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci. 2009;29(31):9740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Asanuma K et al. The metabolic pathology of dopa-responsive dystonia. Ann Neurol. 2005;57(4):596–600.

    Article  CAS  PubMed  Google Scholar 

  101. Hutchinson M et al. The metabolic topography of essential blepharospasm: a focal dystonia with general implications. Neurology. 2000;55(5):673–7.

    Article  CAS  PubMed  Google Scholar 

  102. Carbon M et al. Regional metabolism in primary torsion dystonia: effects of penetrance and genotype. Neurology. 2004;62(8):1384–90.

    Article  CAS  PubMed  Google Scholar 

  103. Carbon M et al. Metabolic changes in DYT11 myoclonus-dystonia. Neurology. 2013;80(4):385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eidelberg D et al. The metabolic topography of idiopathic torsion dystonia. Brain. 1995;118(Pt 6):1473–84.

    Article  PubMed  Google Scholar 

  105. Niethammer M et al. Hereditary dystonia as a neurodevelopmental circuit disorder: evidence from neuroimaging. Neurobiol Dis. 2011;42(2):202–9.

    Article  PubMed  Google Scholar 

  106. Carbon M, Eidelberg D. Abnormal structure-function relationships in hereditary dystonia. Neuroscience. 2009;164(1):220–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Odergren T, Stone-Elander S, Ingvar M. Cerebral and cerebellar activation in correlation to the action-induced dystonia in writer's cramp. Mov Disord. 1998;13(3):497–508.

    Article  CAS  PubMed  Google Scholar 

  108. Carbon M et al. Impaired sequence learning in dystonia mutation carriers: a genotypic effect. Brain. 2011;134(Pt 5):1416–27.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Carbon M et al. Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain. 2008;131(Pt 1):146–54.

    PubMed  Google Scholar 

  110. Thobois S et al. Globus pallidus stimulation reduces frontal hyperactivity in tardive dystonia. J Cereb Blood Flow Metab. 2008;28(6):1127–38.

    Article  PubMed  Google Scholar 

  111. Delmaire C et al. Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp. Neurology. 2007;69(4):376–80.

    Article  CAS  PubMed  Google Scholar 

  112. Carbon M et al. Microstructural white matter changes in primary torsion dystonia. Mov Disord. 2008;23(2):234–9.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Vo A et al. Thalamocortical connectivity correlates with phenotypic variability in dystonia. Cereb Cortex. 2015;25(9):3086–94.

    Article  PubMed  Google Scholar 

  114. Sako, W., et al., The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia. Brain, 2015.

  115. Dresel C et al. Multiple changes of functional connectivity between sensorimotor areas in focal hand dystonia. J Neurol Neurosurg Psychiatry. 2014;85(11):1245–52.

    Article  PubMed  Google Scholar 

  116. Draganski B et al. "Motor circuit" gray matter changes in idiopathic cervical dystonia. Neurology. 2003;61(9):1228–31.

    Article  CAS  PubMed  Google Scholar 

  117. Obermann M et al. Morphometric changes of sensorimotor structures in focal dystonia. Mov Disord. 2007;22(8):1117–23.

    Article  PubMed  Google Scholar 

  118. Ramdhani RA et al. What's special about task in dystonia? A voxel-based morphometry and diffusion weighted imaging study. Mov Disord. 2014;29(9):1141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Draganski B et al. Genotype-phenotype interactions in primary dystonias revealed by differential changes in brain structure. NeuroImage. 2009;47(4):1141–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zeuner KE et al. Increased volume and impaired function: the role of the basal ganglia in writer's cramp. Brain Behav. 2015;5(2):e00301.

    Article  PubMed  Google Scholar 

  121. Baker RS et al. A functional magnetic resonance imaging study in patients with benign essential blepharospasm. J Neuroophthalmol. 2003;23(1):11–5.

    Article  PubMed  Google Scholar 

  122. Schmidt KE et al. Striatal activation during blepharospasm revealed by fMRI. Neurology. 2003;60(11):1738–43.

    Article  PubMed  Google Scholar 

  123. Zhou B et al. A resting state functional magnetic resonance imaging study of patients with benign essential blepharospasm. J Neuroophthalmol. 2013;33(3):235–40.

    Article  CAS  PubMed  Google Scholar 

  124. Hu XY et al. Functional magnetic resonance imaging study of writer's cramp. Chin Med J. 2006;119(15):1263–71.

    PubMed  Google Scholar 

  125. Gallea C et al. Increased cortico-striatal connectivity during motor practice contributes to the consolidation of motor memory in writer's cramp patients. Neuroimage Clin. 2015;8:180–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fiorio M et al. The role of the cerebellum in dynamic changes of the sense of body ownership: a study in patients with cerebellar degeneration. J Cogn Neurosci. 2014;26(4):712–21.

    Article  PubMed  Google Scholar 

  127. Moore RD et al. Individuated finger control in focal hand dystonia: an fMRI study. NeuroImage. 2012;61(4):823–31.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Delnooz CC et al. Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin. PLoS One. 2013;8(5):e62877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mohammadi B et al. Changes in resting-state brain networks in writer's cramp. Hum Brain Mapp. 2012;33(4):840–8.

    Article  PubMed  Google Scholar 

  130. Lehericy S et al. The anatomical basis of dystonia: current view using neuroimaging. Mov Disord. 2013;28(7):944–57.

    Article  PubMed  Google Scholar 

  131. Popa T et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex. 2013;23(2):305–14.

    Article  CAS  PubMed  Google Scholar 

  132. Hubsch C et al. Defective cerebellar control of cortical plasticity in writer's cramp. Brain. 2013;136(Pt 7):2050–62.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Bostan AC, Strick PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20(3):261–70.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Quartarone A, Hallett M. Emerging concepts in the physiological basis of dystonia. Mov Disord. 2013;28(7):958–67.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Blakemore SJ, Wolpert DM, Frith CD. The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. NeuroImage. 1999;10(4):448–59.

    Article  CAS  PubMed  Google Scholar 

  137. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Batla, A., et al., The role of cerebellum in patients with late onset cervical/segmental dystonia?-Evidence from the clinic. Parkinsonism Relat Disord, 2015.

  139. Cancel G et al. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet. 1997;6(5):709–15.

    Article  CAS  PubMed  Google Scholar 

  140. Hagenah JM et al. Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov Disord. 2004;19(2):217–20.

    Article  PubMed  Google Scholar 

  141. Lang AE et al. Homozygous inheritance of the Machado-Joseph disease gene. Ann Neurol. 1994;36(3):443–7.

    Article  CAS  PubMed  Google Scholar 

  142. van de Warrenburg BP et al. The syndrome of (predominantly cervical) dystonia and cerebellar ataxia: new cases indicate a distinct but heterogeneous entity. J Neurol Neurosurg Psychiatry. 2007;78(7):774–5.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kuoppamaki M et al. Slowly progressive cerebellar ataxia and cervical dystonia: clinical presentation of a new form of spinocerebellar ataxia? Mov Disord. 2003;18(2):200–6.

    Article  PubMed  Google Scholar 

  144. Kumandas S et al. Torticollis secondary to posterior fossa and cervical spinal cord tumors: report of five cases and literature review. Neurosurg Rev. 2006;29(4):333–8 discussion 338.

    Article  PubMed  Google Scholar 

  145. Teo JT et al. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry. 2009;80(1):80–3.

    Article  CAS  PubMed  Google Scholar 

  146. Sommer M et al. Learning in Parkinson's disease: eyeblink conditioning, declarative learning, and procedural learning. J Neurol Neurosurg Psychiatry. 1999;67(1):27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Paudel R et al. Neuropathological features of genetically confirmed DYT1 dystonia: investigating disease-specific inclusions. Acta Neuropathol Commun. 2014;2:159.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kulisevsky J et al. Meige syndrome: neuropathology of a case. Mov Disord. 1988;3(2):170–5.

    Article  CAS  PubMed  Google Scholar 

  149. Paudel R et al. Review: genetics and neuropathology of primary pure dystonia. Neuropathol Appl Neurobiol. 2012;38(6):520–34.

    Article  CAS  PubMed  Google Scholar 

  150. Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum. 2005;4(4):218–23.

    Article  PubMed  Google Scholar 

  151. Brighina F et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res. 2009;192(4):651–6.

    Article  CAS  PubMed  Google Scholar 

  152. Koch G et al. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimul. 2014;7(4):564–72.

    Article  PubMed  Google Scholar 

  153. Hamada M et al. Cerebellar modulation of human associative plasticity. J Physiol. 2012;590(Pt 10):2365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sadnicka A et al. Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. Mov Disord. 2014;29(10):1304–7.

    Article  PubMed  Google Scholar 

  155. Hubsch C et al. Impaired saccadic adaptation in DYT11 dystonia. J Neurol Neurosurg Psychiatry. 2011;82(10):1103–6.

    Article  PubMed  Google Scholar 

  156. Hoffland BS et al. Cerebellum-dependent associative learning deficits in primary dystonia are normalized by rTMS and practice. Eur J Neurosci. 2013;38(1):2166–71.

    Article  CAS  PubMed  Google Scholar 

  157. Hoffland BS et al. Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol. 2012;590(Pt 4):887–97.

    Article  CAS  PubMed  Google Scholar 

  158. Linssen MW et al. A single session of cerebellar theta burst stimulation does not alter writing performance in writer's cramp. Brain. 2015;138(Pt 6):e355.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

VGS was supported by grants from the National Institutes of Health (K08NS072158, R01NS085054). EJH was supported in part by Public Health Service grant R01 NS088528 and a grant from the United States Department of Defense (PR140091). MSL was supported by grants from the National Institutes of Health (R01 NS069936, R01 NS082296, and Dystonia Coalition U54 NS065701), the Dorothy/Daniel Gerwin Parkinson’s Research Fund, and the Benign Essential Blepharospasm Research Foundation. HAJ was supported in part by a grant to the Dystonia Coalition (U54 NS065701, TR001456) from the Office of Rare Diseases at the National Center for Advancing Translational Studies and the National Institute of Neurological Disorders and Stroke at the NIH. MH was supported by the NIH intramural program. PLS was supported by grants from the National Institutes of Health (R01 NS24328, P30 NS076405, P40 OD010996). KK was supported by NIH grants NS050808 and NS079750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram G. Shakkottai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakkottai, V.G., Batla, A., Bhatia, K. et al. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. Cerebellum 16, 577–594 (2017). https://doi.org/10.1007/s12311-016-0825-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0825-6

Keywords

Navigation