Skip to main content
Log in

Cerebellar Contribution to Context Processing in Extinction Learning and Recall

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Whereas acquisition of new associations is considered largely independent of the context, context dependency is a hallmark of extinction of the learned associations. The hippocampus and the prefrontal cortex are known to be involved in context processing during extinction learning and recall. Although the cerebellum has known functional and anatomic connections to the hippocampus and the prefrontal cortex, cerebellar contributions to context processing of extinction have rarely been studied. In the present study, we reanalyzed functional brain imaging data (fMRI) of previous work investigating context effects during extinction in a cognitive associative learning paradigm in 28 young and healthy subjects (Lissek et al. Neuroimage. 81:131–3, 2013). In that study, event-related fMRI analysis did not include the cerebellum. The 3 T fMRI dataset was reanalyzed using a spatial normalization method optimized for the cerebellum. Data of seven participants had to be excluded because the cerebellum had not been scanned in full. Cerebellar activation related to context change during extinction learning was most prominent in lobule Crus II bilaterally (p < 0.01, t > 2.53; partially corrected by predetermined cluster size). No significant cerebellar activations were observed related to context change during extinction retrieval. The posterolateral cerebellum appears to contribute to context-related processes during extinction learning, but not (or less) during extinction retrieval. The cerebellum may support context learning during extinction via its connections to the hippocampus. Alternatively, the cerebellum may support the shifting of attention to the context via its known connections to the dorsolateral prefrontal cortex. Because the ventromedial prefrontal cortex (vmPFC) is critically involved in context-related processes during extinction retrieval, and there are no known connections between the cerebellum and the vmPFC, the cerebellum may be less important during extinction recall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dudai Y. Memory from A to Z, keywords, concepts and beyond. Oxford: Oxford University Press; 2002.

    Google Scholar 

  2. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157:163–86.

    Article  CAS  PubMed  Google Scholar 

  3. Pavlov I. Conditioned reflexes. Oxford: Oxford University Press; 1927.

    Google Scholar 

  4. De Zeeuw CI, Yeo CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol. 2005;15:667–74.

    Article  PubMed  Google Scholar 

  5. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33:56–72.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. Cerebellum. 2007;6:38–57. Review.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson RF, Steinmetz JE. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience. 2009;162:732–55.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng DT, Meintjes EM, Stanton ME, Desmond JE, Pienaar M, Dodge NC, et al. Functional MRI of cerebellar activity during eyeblink classical conditioning in children and adults. Hum Brain Mapp. 2014;35:1390–403.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.

    Article  CAS  PubMed  Google Scholar 

  10. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex. 2010;46:845–7.

    Article  CAS  PubMed  Google Scholar 

  11. Medina JF, Nores WL, Mauk MD. Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature. 2002;416:330–3.

    Article  CAS  PubMed  Google Scholar 

  12. Gerwig M, Hajjar K, Frings M, Dimitrova A, Thilmann AF, Kolb FP, et al. Extinction of conditioned eyeblink responses in patients with cerebellar disorders. Neurosci Lett. 2006;406:87–91.

    Article  CAS  PubMed  Google Scholar 

  13. Bouton ME, Westbrook RF, Corcoran KA, Maren S. Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol Psychiatry. 2006;60:352–60.

    Article  PubMed  Google Scholar 

  14. Delamater AR, Westbrook RF. Psychological and neural mechanisms of experimental extinction: a selective review. Neurobiol Learn Mem. 2014;108:38–51.

    Article  PubMed  Google Scholar 

  15. Bouton ME, King DA. Contextual control of the extinction of conditioned fear: tests for the associative value of the context. J Exp Psychol Anim Behav Process. 1983;9:248–65.

    Article  CAS  PubMed  Google Scholar 

  16. Rosas JM, Bouton ME. Additivity of the effects of retention interval and context change on latent inhibition: toward resolution of the context forgetting paradox. J Exp Psychol Anim Behav Process. 1997;23:283–94.

    Article  CAS  PubMed  Google Scholar 

  17. Bouton ME, Bolles RC. Role of conditioned contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim Behav Process. 1979;5:368–78.

    Article  CAS  PubMed  Google Scholar 

  18. Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004;5:844–52.

    Article  CAS  PubMed  Google Scholar 

  19. Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol. 2012;63:129–51.

    Article  PubMed  Google Scholar 

  20. Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14:417–28.

    Article  CAS  PubMed  Google Scholar 

  21. Lissek S, Glaubitz B, Uengoer M, Tegenthoff M. Hippocampal activation during extinction learning predicts occurrence of the renewal effect in extinction recall. Neuroimage. 2013;81:131–3.

    Article  PubMed  Google Scholar 

  22. Kalisch R, Korenfeld E, Stephan KE, Weiskopf N, Seymour B, Dolan RJ. Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci. 2006;26:9503–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62:446–54.

    Article  PubMed  Google Scholar 

  24. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17:241–54.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Oganesian EA, Melik-Musian AB, Fanardzhian VV, Grigorian IK. Morpho-functional analysis of the nature of cerebello-hippocampal connections. Fiziol Zh SSSR Im I M Sechenova. 1980;66:1632–9.

    CAS  PubMed  Google Scholar 

  26. Yu QX, Gao JF, Wang JJ, Chen J. Hippocampus-cerebellar cortex-cerebellar nuclei projection in the rat: electrophysiological and HRP studies. Sheng Li Xue Bao. 1989;41:231–40.

    CAS  PubMed  Google Scholar 

  27. Iglói K, Doeller CF, Paradis AL, Benchenane K, Berthoz A, Burgess N, et al. Interaction between hippocampus and cerebellum Crus I in sequence-based but not place-based navigation. Cereb Cortex. 2014.

  28. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33:127–38.

    Article  PubMed  Google Scholar 

  29. Üngör M, Lachnit H. Contextual control in discrimination reversal learning. J Exp Psychol Anim Behav Process. 2006;32:441–53.

    Article  PubMed  Google Scholar 

  30. Thürling M, Küper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7T MRI study. Neuroimage. 2011;57:1184–91.

    Article  PubMed  Google Scholar 

  31. Thürling M, Hautzel H, Küper M, Stefanescu MR, Maderwald S, Ladd ME, et al. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7T fMRI study. Neuroimage. 2012;62:1537–50.

    Article  PubMed  Google Scholar 

  32. Eklund A, Andersson M, Knutsson H. fMRI analysis on the GPU-possibilities and challenges. Comput Methods Programs Biomed. 2012;105:145–61.

    Article  PubMed  Google Scholar 

  33. Friston KJ, Frith CD, Turner R, Frackowiak RS. Characterizing evoked hemodynamics with fMRI. Neuroimage. 1995;2:157–65.

    Article  CAS  PubMed  Google Scholar 

  34. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46:39–46.

    Article  PubMed  Google Scholar 

  35. Bennett CM, Wolford GL, Miller MB. The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci. 2009;4:417–22.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage. 1999;10:233–60.

    Article  CAS  PubMed  Google Scholar 

  37. Wikgren J, Nokia MS, Penttonen M. Hippocampo-cerebellar theta band phase synchrony in rabbits. Neuroscience. 2010;165:1538–45.

    Article  CAS  PubMed  Google Scholar 

  38. Liu W, Zhang Y, Yuan W, Wang J, Li S. A direct hippocampo-cerebellar projection in chicken. Anat Rec (Hoboken). 2012;295:1311–20.

    Article  Google Scholar 

  39. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    CAS  PubMed  Google Scholar 

  40. Bouton ME. Context and behavioral processes in extinction. Learn Mem. 2004;11:485–94.

    Article  PubMed  Google Scholar 

  41. Lucke S, Lachnit H, Koenig S, Uengoer M. The informational value of contexts affects context-dependent learning. Learn Behav. 2013;41:285–97.

    Article  PubMed  Google Scholar 

  42. Dias R, Robbins TW, Roberts AC. Dissociation in prefrontal cortex of affective and attentional shifts. Nature. 1996;380:69–72.

    Article  CAS  PubMed  Google Scholar 

  43. Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Courchesne R, Lincoln AJ, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994;108:848–65.

    Article  CAS  PubMed  Google Scholar 

  44. Golla H, Thier P, Haarmeier T. Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain. 2005;128:1525–35.

    Article  PubMed  Google Scholar 

  45. Ravizza SM, Ivry RB. Comparison of the basal ganglia and cerebellum in shifting attention. J Cogn Neurosci. 2001;13:285–97.

    Article  CAS  PubMed  Google Scholar 

  46. Bischoff-Grethe A, Ivry RB, Grafton ST. Cerebellar involvement in response reassignment rather than attention. J Neurosci. 2002;22:546–53.

    CAS  PubMed  Google Scholar 

  47. Haarmeier T, Thier P. The attentive cerebellum—myth or reality? Cerebellum. 2007;6:177–83. Review.

    Article  PubMed  Google Scholar 

  48. Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103:3330–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by DFG Research Unit FOR 1581 (Extinction Learning: Neural Mechanisms, Behavioural Manifestations, and Clinical Implications).

Conflict of Interest

None of the authors reported any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Timmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, DI., Lissek, S., Ernst, T.M. et al. Cerebellar Contribution to Context Processing in Extinction Learning and Recall. Cerebellum 14, 670–676 (2015). https://doi.org/10.1007/s12311-015-0670-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0670-z

Keywords

Navigation