Skip to main content
Log in

The Spontaneous Ataxic Mouse Mutant Tippy is Characterized by a Novel Purkinje Cell Morphogenesis and Degeneration Phenotype

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This study represents the first detailed analysis of the spontaneous neurological mouse mutant, tippy, uncovering its unique cerebellar phenotype. Homozygous tippy mutant mice are small, ataxic, and die around weaning. Although the cerebellum shows grossly normal foliation, tippy mutants display a complex cerebellar Purkinje cell phenotype consisting of abnormal dendritic branching with immature spine features and patchy, non-apoptotic cell death that is associated with widespread dystrophy and degeneration of the Purkinje cell axons throughout the white matter, the cerebellar nuclei, and the vestibular nuclei. Moderate anatomical abnormalities of climbing fiber innervation of tippy mutant Purkinje cells were not associated with changes in climbing fiber-EPSC amplitudes. However, decreased ESPC amplitudes were observed in response to parallel fiber stimulation and correlated well with anatomical evidence for patchy dark cell degeneration of Purkinje cell dendrites in the molecular layer. The data suggest that the Purkinje neurons are a primary target of the tippy mutation. Furthermore, we hypothesize that the Purkinje cell axonal pathology together with disruptions in the balance of climbing fiber and parallel fiber-Purkinje cell input in the cerebellar cortex underlie the ataxic phenotype in these mice. The constellation of Purkinje cell dendritic malformation and degeneration phenotypes in tippy mutants is unique and has not been reported in any other neurologic mutant. Fine mapping of the tippy mutation to a 2.1 MB region of distal chromosome 9, which does not encompass any gene previously implicated in cerebellar development or neuronal degeneration, confirms that the tippy mutation identifies novel biology and gene function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sidman RL, Appel SH, Fullier JF. Neurological mutants of the mouse. Science. 1965;150:513–6.

    Article  CAS  PubMed  Google Scholar 

  2. Grüsser-Cornehls U, Bäurle J. Mutant mice as a model for cerebellar ataxia. Prog Neurobiol. 2001;63:489–540.

    Article  PubMed  Google Scholar 

  3. Hirano T. Cerebellar regulation mechanisms learned from studies on GluRdelta2. Mol Neurobiol. 2006;33:1–16.

    Article  CAS  PubMed  Google Scholar 

  4. Meisler MH, Sprunger LK, Plummer NW, Escayg A, Jones JM. Ion channel mutations in mouse models of inherited neurological disease. Ann Med. 1997;29:569–74.

    Article  CAS  PubMed  Google Scholar 

  5. Lane PW, Bronson RT. Tippy (tip) A lethal mutation on chromosome 9 in the mouse. Mouse Genome. 1995;93:158–60.

    Google Scholar 

  6. Barclay J, Balaguero N, Mione M, Ackerman SL, Letts VA, Brodbeck J, et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci. 2001;21:6095–104.

    CAS  PubMed  Google Scholar 

  7. Chizhikov VV, Millen KJ. Control of roof plate formation by Lmx1a in the developing spinal cord. Development. 2004;131:2693–705.

    Article  CAS  PubMed  Google Scholar 

  8. Hirai H, Pang Z, Bao D, Miyazaki T, Li L, Miura E, et al. Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci. 2005;8:1534–41.

    Article  CAS  PubMed  Google Scholar 

  9. Sekerková G, Diño MR, Ilijic E, Russo M, Zheng L, Bartles JR, et al. Postsynaptic enrichment of Eps8 at dendritic shaft synapses of unipolar brush cells in rat cerebellum. Neuroscience. 2007;145:116–29.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chizhikov VV, Davenport J, Zhang Q, Shih EK, Cabello OA, Fuchs JL, et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci. 2007;27:9780–9.

    Article  CAS  PubMed  Google Scholar 

  11. Schmued LC, Stowers CC, Scallet AC, Xu L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 2005;1035:24–31.

    Article  CAS  PubMed  Google Scholar 

  12. Faust P. Abnormal cerebellar histogenesis in PEX2 Zellweger mice reflects multiple neuronal defects induced by peroxisome deficiency. J Comp Neurol. 2003;461:394–3413.

    Article  CAS  PubMed  Google Scholar 

  13. Matsubayashi Y, Iwai L, Kawasaki H. Flourescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. J Neurosci Methods. 2008;174:71–81.

    Article  CAS  PubMed  Google Scholar 

  14. Moran JL, Bolton AD, Tran PV, Brown A, Dwyer ND, Manning DK, et al. Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Res. 2006;16:436–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ideraabdullah FY, Kim K, Pomp D, Moran JL, Beier D, Villena FP. Rescue of the Mouse DDK Syndrome by Parent-of-Origin-Dependent Modifiers. Biol Reprod. 2007;76:286–93.

    Article  CAS  PubMed  Google Scholar 

  16. Gudbjartsson DF, Thorvaldsson T, Kong A, Gunnarsson G, Ingolfsdottir A. Allegro version 2. Nat Genet. 2005;37:1015–6.

    Article  CAS  PubMed  Google Scholar 

  17. Mugnaini E, Berrebi AS, Dahl AL, Morgan JI. The polypeptide PEP-19 is a marker for Purkinje neurons in cerebellar cortex and cartwheel neurons in the dorsal cochlear nucleus. Arch Ital Biol. 1987;126:41–67.

    CAS  PubMed  Google Scholar 

  18. Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70:473–507.

    Article  CAS  PubMed  Google Scholar 

  19. Larramendi EM, Victor T. Synapses on the Purkinje cell spines in the mouse. An electron microscopic study. Brain Res. 1967;5:15–30.

    Article  CAS  PubMed  Google Scholar 

  20. Palay SL, Chan-Palay V. Cerebellar Cortex. New York: Springer; 1974.

    Book  Google Scholar 

  21. Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res. 1975;94:19–44.

    Article  CAS  PubMed  Google Scholar 

  22. Rossi F, van der Want JJ, Wiklund L, Strata P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II. Synaptic organization on reinnervated Purkinje cells. J Comp Neurol. 1991;308:536–54.

    Article  CAS  PubMed  Google Scholar 

  23. Cesa R, Morando L, Strata P. Glutamate receptor delta2 subunit in activity-dependent heterologous synaptic competition. J Neurosci. 2003;23:2363–70.

    CAS  PubMed  Google Scholar 

  24. Ichikawa R, Miyazaki T, Kano M, Hashikawa T, Tatsumi H, Sakimura K, et al. Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar Purkinje cells lacking glutamate receptor delta 2. J Neurosci. 2002;22:8487–503.

    CAS  PubMed  Google Scholar 

  25. Crépel F, Delhaye-Bouchaud N, Dupont JL. Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res. 1981;227:59–71.

    Article  PubMed  Google Scholar 

  26. Konnerth A, Llano I, Armstrong CM. Synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci U S A. 1990;87:2662–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Llinás R, Sugimori M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol. 1980;305:197–213.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Perkel DJ, Hestrin S, Sah P, Nicoll RA. Excitatory synaptic currents in Purkinje cells. Proc Biol Sci. 1990;241:116–21.

    Article  CAS  PubMed  Google Scholar 

  29. Kapfhammer JP. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem. 2004;39:131–82.

    Article  PubMed  Google Scholar 

  30. Rakic P, Sidman RL. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol. 1973;152:133–61.

    Article  CAS  PubMed  Google Scholar 

  31. Hering H, Sheng M. Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci. 2001;2:880–8.

    Article  CAS  PubMed  Google Scholar 

  32. Cesa R, Morando L, Strata P. Purkinje cell spinogenesis during architectural rewiring in the mature cerebellum. Eur J Neurosci. 2005;22:579–86.

    Article  PubMed  Google Scholar 

  33. Rossi F, Strata P. Reciprocal trophic interactions in the adult climbing fibre-Purkinje cell system. Prog Neurobiol. 1995;47:341–69.

    CAS  PubMed  Google Scholar 

  34. Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, et al. Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci. 1997;17:834–42.

    CAS  PubMed  Google Scholar 

  35. Morando L, Cesa R, Rasetti R, Harvey R, Strata P. Role of glutamate delta −2 receptors in activity-dependent competition between heterologous afferent fibers. Proc Natl Acad Sci U S A. 2001;98:9954–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Takayama C, Nakagawa S, Watanabe M, Mishina M, Inoue Y. Developmental changes in expression and distribution of the glutamate receptor channel delta 2 subunit according to the Purkinje cell maturation. Brain Res Dev Brain Res. 1996;92:147–55.

    Article  CAS  PubMed  Google Scholar 

  37. Cesa R, Strata P. Axonal competition in the synaptic wiring of the cerebellar cortex during development and in the mature cerebellum. Neuroscience. 2009;162:624–32.

    Article  CAS  PubMed  Google Scholar 

  38. Crépel F. Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci. 1982;5:266–9.

    Article  Google Scholar 

  39. Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M. Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing-fiber-Purkinje cell synapses in the cerebellum. Neuroscience. 2009;162:601–11.

    Article  CAS  PubMed  Google Scholar 

  40. Mariani J. Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler, and staggerer mutant mice. J Neurobiol. 1982;13:119–26.

    Article  CAS  PubMed  Google Scholar 

  41. Ohtsuki G, Piochon C, Hansel C. Climbing fiber signaling and cerebellar gain control. Front Cell Neurosci. 2009;3:4. doi:10.3389/neuro.03.004.2009. eCollection 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ohtsuki G, Hirano T. Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses. Eur J Neurosci. 2008;28:2393–400.

    Article  PubMed  Google Scholar 

  43. Scelfo B, Strata P. Correlation between multiple climbing fibre regression and parallel fibre response development in the postnatal mouse cerebellum. Eur J Neurosci. 2005;21:971–8.

    Article  PubMed  Google Scholar 

  44. Woodward DJ, Hoffer BJ, Altman J. Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal x-irradiation. J Neurobiol. 1974;5:283–304.

    Article  CAS  PubMed  Google Scholar 

  45. Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci. 2005;6:889–98.

    Article  CAS  PubMed  Google Scholar 

  46. Fisher LR, Culver DG, Tennant P, et al. Amyotrophic lateral sclerosis is a distal axonopathy in mice and man. Exp Neurol. 2004;185:20534–2542.

    Google Scholar 

  47. Fischer LR, Glass JD. Axonal degeneration in motor neuron disease. Neurodegener Dis. 2007;4:431–42.

    Article  PubMed  Google Scholar 

  48. Résibois A, Poncelet L. Purkinje cell neuroaxinal dystrophy similar to nervous mutant mice phenotype in two sibling kittens. Acta Neuropathol. 2004;107:553–8.

    Article  PubMed  Google Scholar 

  49. Saxena S, Caroni P. Mechanisms of axon degeneration: from development to disease. Prog Neurobiol. 2007;83:174–91.

    Article  CAS  PubMed  Google Scholar 

  50. Wishart TM, Parson SH, Gillingwater TH. Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol. 2006;65:733–9.

    Article  CAS  PubMed  Google Scholar 

  51. Doulazmi M, Frederic F, Capone F, Becker-Andre M, Delhaye-Bouchaud N, Mariani J. A comparative study of Purkinje cells in two RORalpha gene mutant mice: staggerer and RORalpha(−/−). Brain Res Dev Brain Res. 2001;127:165–74.

    Article  CAS  PubMed  Google Scholar 

  52. Herrup K. Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Brain Res. 1983;313:267–374.

    Article  CAS  PubMed  Google Scholar 

  53. Landis DM, Sidman RL. Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol. 1978;179:831–63.

    Article  CAS  PubMed  Google Scholar 

  54. Pfenninger K, Sandri C, Akert K, Eugster CH. Contribution to the problem of structural organization of the presynaptic area. Brain Res. 1969;12:10–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sidman RL, Lane PW, Dickie MM. Staggerer, a new mutation in the mouse affecting the cerebellum. Science. 1962;137:610–2.

    Article  CAS  PubMed  Google Scholar 

  56. Sotelo C. Permanence and fate of paramembranous synaptic specializations in “mutants” experimental animals. Brain Res. 1973;62:345–51.

    Article  CAS  PubMed  Google Scholar 

  57. Sotelo C, Changeux JP. Transsynaptic degeneration ‘en cascade’ in the cerebellar cortex of staggerer mutant mice. Brain Res. 1974;67:519–26.

    Article  CAS  PubMed  Google Scholar 

  58. Sotelo C, Triller A. Fate of presynaptic afferents to Purkinje cells in the adult nervous mutant mouse: a model to study presynaptic stabilization. Brain Res. 1979;175:11–36.

    Article  CAS  PubMed  Google Scholar 

  59. Eskelinen EL, Saftig P. Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta. 2009;1793:664–73.

    Article  CAS  PubMed  Google Scholar 

  60. Kaja S, Duncan RS, Longoria S, Hilgenberg JD, Payne AJ, Desai NM, et al. Novel mechanism of increased Ca(2+) release following oxidative stress in neuronal cells involves type 2 inositol-1,4,5-trisphosphate receptors. Neuroscience. 2011;175:281–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Yang DS, Kumar A, Stavrides P, Peterson J, Peterhoff CM, Pawlik M, et al. Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer’s disease. Am J Pathol. 2008;173:665–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-ß, and Bcl-2. Mol Cell. 2007;25:193–205.

    Article  PubMed  Google Scholar 

  63. Ivannikov MV, Sugimori M, Llinás R. Calcium clearance and its energy requirements in cerebellar neurons. Cell Calcium. 2010;47:507–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Mullen RJ, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A. 1976;73:208–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. Rose Rogers, Nicholas Trojanowski, and Paul Wakenight for their invaluable technical assistance. This work was supported by NIH grants R03 NS065382 (KJM), R01 NS050386 and R01 NS072441 (KJM), R01 NS09904 (EM), T32 GM007281 (EKS), NRSA F31NS061436-01 (EKS), with additional funding from NWO-ALW 817.02.013 (CH) and the Brain Research Foundation (KJM).

Conflict of Interest

All authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen J. Millen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, E.K., Sekerková, G., Ohtsuki, G. et al. The Spontaneous Ataxic Mouse Mutant Tippy is Characterized by a Novel Purkinje Cell Morphogenesis and Degeneration Phenotype. Cerebellum 14, 292–307 (2015). https://doi.org/10.1007/s12311-014-0640-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0640-x

Keywords

Navigation