Skip to main content

Advertisement

Log in

Impaired Modulation of the Otolithic Function in Acute Unilateral Cerebellar Infarction

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

To define the cerebellar contribution in modulating the otolithic signals, we investigated the otolithic function in 27 patients with acute unilateral cerebellar infarctions in the territory of the posterior inferior cerebellar artery (PICA, n = 17, 63 %), combined PICA and superior cerebellar artery (SCA) (n = 7, 30 %), SCA (n = 2, 7 %), and anterior inferior cerebellar artery (n = 1, 4 %) from 2010 to 2012. The patients had evaluation of the ocular tilt reaction [head tilt, ocular torsion (OT), and skew deviation], tilt of the subjective visual vertical (SVV), cervical vestibular evoked myogenic potentials (VEMPs) in response to air conducted tone bursts, and ocular VEMPs induced by tapping the head at AFz. The evaluation was completed within 2 weeks after symptom onset. Patients often showed OT or SVV tilt (15/27, 55.6 %) that was either ipsi- (n = 6) or contraversive (n = 9). Overall, there were no differences in the amplitudes and latencies of cervical and ocular VEMPs between the ipsi- and contralesional sides. However, individual analyses revealed frequent abnormalities of cervical (11/27, 41 %) and/or ocular (9/27, 33 %) VEMPs. While 11 (73 %) of the 15 patients with the OTR/SVV tilt showed abnormalities of cervical (n = 9) and/or ocular (n = 7) VEMP responses, only three (25 %) of the 12 patients without the OTR/SVV tilt had abnormal cervical (n = 2) and/or ocular (n = 2) VEMPs (73 % vs. 25 %, Fisher’s exact test, p = 0.021). The concordance rate in the results of cervical and ocular VEMPs was marginally significant (19/27, 70 %, p = 0.052, binominal). Unilateral cerebellar lesions may generate otolithic imbalances, as evidenced by the OTR/SVV tilt and asymmetric ocular or cervical VEMP responses, but without directionality according to the lesion side. Patients with the OTR/SVV tilt had abnormal VEMPs more often than those without.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahn BH, Kim HA, Yi HA, Oh SY, Lee H. Abnormal cervical vestibular-evoked myogenic potential in anterior inferior cerebellar artery territory infarction: frequency, pattern, and a determinant. J Neurol Sci. 2011;307:114–9.

    Article  PubMed  Google Scholar 

  2. Angelaki DE, Yakusheva TA. How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus. Ann N Y Acad Sci. 2009;1164:19–28.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Baier B, Bense S, Dieterich M. Are signs of ocular tilt reaction in patients with cerebellar lesions mediated by the dentate nucleus? Brain. 2008;131:1445–54.

    Article  CAS  PubMed  Google Scholar 

  4. Brandt T, Dieterich M. Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Ann Neurol. 1994;36:337–47.

    Article  CAS  PubMed  Google Scholar 

  5. Buttner-Ennever JA. A review of otolith pathways to brainstem and cerebellum. Ann N Y Acad Sci. 1999;871:51–64.

    Article  CAS  PubMed  Google Scholar 

  6. Choi KD, Oh SY, Kim HJ, Koo JW, Cho BM, Kim JS. Recovery of vestibular imbalances after vestibular neuritis. Laryngoscope. 2007;117:1307–12.

    Article  PubMed  Google Scholar 

  7. Colebatch JG, Halmagyi GM. Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. Neurology. 1992;42:1635–6.

    Article  CAS  PubMed  Google Scholar 

  8. Curthoys IS. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol. 2010;121:132–44.

    Article  PubMed  Google Scholar 

  9. Gazioglu S, Boz C. Ocular and cervical vestibular evoked myogenic potentials in multiple sclerosis patients. Clin Neurophysiol. 2012;123:1872–9.

    Article  PubMed  Google Scholar 

  10. Iwasaki S, McGarvie LA, Halmagyi GM, Burgess AM, Kim J, Colebatch JG, et al. Head taps evoke a crossed vestibulo-ocular reflex. Neurology. 2007;68:1227–9.

    Article  CAS  PubMed  Google Scholar 

  11. Iwasaki S, Smulders YE, Burgess AM, McGarvie LA, Macdougall HG, Halmagyi GM, et al. Ocular vestibular evoked myogenic potentials to bone conducted vibration of the midline forehead at Fz in healthy subjects. Clin Neurophysiol. 2008;119:2135–47.

    Article  CAS  PubMed  Google Scholar 

  12. Kim HA, Lee H, Yi HA, Lee SR, Lee SY, Baloh RW. Pattern of otolith dysfunction in posterior inferior cerebellar artery territory cerebellar infarction. J Neurol Sci. 2009;280:65–70.

    Article  PubMed  Google Scholar 

  13. Kim S, Lee HS, Kim JS. Medial vestibulospinal tract lesions impair sacculo-collic reflexes. J Neurol. 2010;257:825–32.

    Article  PubMed  Google Scholar 

  14. Lee H, Yi HA, Lee SR, Lee SY, Park BR. Ocular torsion associated with infarction in the territory of the anterior inferior cerebellar artery: frequency, pattern, and a major determinant. J Neurol Sci. 2008;269:18–23.

    Article  PubMed  Google Scholar 

  15. Leigh RJ, Zee DS. The neurology of eye movements. 4th ed. New York: Oxford University Press; 2006.

    Google Scholar 

  16. Mossman S, Halmagyi GM. Partial ocular tilt reaction due to unilateral cerebellar lesion. Neurology. 1997;49:491–3.

    Article  CAS  PubMed  Google Scholar 

  17. Naidich TP, Duvernoy HM. Duvernoy’s Atlas of the human brain stem and cerebellum. New York: Springer; 2009.

    Book  Google Scholar 

  18. Newlands SD, Vrabec JT, Purcell IM, Stewart CM, Zimmerman BE, Perachio AA. Central projections of the saccular and utricular nerves in macaques. J Comp Neurol. 2003;466:31–47.

    Article  PubMed  Google Scholar 

  19. Oh SY, Kim JS, Lee JM, Shin BS, Hwang SB, Kwak KC, et al. Ocular vestibular evoked myogenic potentials induced by air-conducted sound in patients with acute brainstem lesions. Clin Neurophysiol. 2012;124:770–8.

    Article  PubMed  Google Scholar 

  20. Pollak L, Kushnir M, Stryjer R. Diagnostic value of vestibular evoked myogenic potentials in cerebellar and lower-brainstem strokes. Neurophysiol Clin. 2006;36:227–33.

    Article  CAS  PubMed  Google Scholar 

  21. Rosengren SM, Welgampola MS, Colebatch JG. Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol. 2010;121:636–51.

    Article  CAS  PubMed  Google Scholar 

  22. Su CH, Young YH. Differentiating cerebellar and brainstem lesions with ocular vestibular-evoked myogenic potential test. Eur Arch Otorhinolaryngol. 2011;268:923–30.

    Article  PubMed  Google Scholar 

  23. Tatu L, Moulin T, Bogousslavsky J, Duvernoy H. Arterial territories of human brain: brainstem and cerebellum. Neurology. 1996;47:1125–35.

    Article  CAS  PubMed  Google Scholar 

  24. Todd NP, Rosengren SM, Colebatch JG. A source analysis of short-latency vestibular evoked potentials produced by air- and bone-conducted sound. Clin Neurophysiol. 2008;119:1881–94.

    Article  PubMed  Google Scholar 

  25. Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS. Lesions of the cerebellar nodulus and uvula in monkeys: effect on otolith-ocular reflexes. Prog Brain Res. 2008;171:167–72.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Welgampola MS, Colebatch JG. Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology. 2005;64:1682–8.

    Article  PubMed  Google Scholar 

  27. Welgampola MS, Myrie OA, Minor LB, Carey JP. Vestibular-evoked myogenic potential thresholds normalize on plugging superior canal dehiscence. Neurology. 2008;70:464–72.

    Article  PubMed  Google Scholar 

  28. William, Duvernoy J. Chronique = Chronica magistri Guillelmi de Podio Laurentii : texte edite, traduit et annote par Jean Duvernoy. Editions du Centre national de la Recherche scientifique; 1976.

  29. Zee DS. Considerations on the mechanisms of alternating skew deviation in patients with cerebellar lesions. J Vestib Res. 1996;6:395–401.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to Jong Hee Lee for conducting the experiments.

Study funding

This study was supported by grants from the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (A080750), Seoul National University R&DB Foundation and Small & Medium Business Administration (0420-2009-000), and Korea Medical Device Industrial Cooperative Association and Small & Medium Business Administration (08-2011-065).

Disclosures

Dr. Choi, Dr. Lee, and Ms. HJ Kim report no disclosures.

Dr. JS Kim serves as an Associate Editor of Frontiers in Neuro-otology and on the Editorial Boards of the Journal of Korean Society of Clinical Neurophysiology, Research in Vestibular Science, Journal of Clinical Neurology, Frontiers in Neuro-ophthalmology, Journal of Neuro-ophthalmology, and Case Reports in Ophthalmological Medicine and received research support from SK Chemicals, Co. Ltd.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.Y., Lee, SH., Kim, H.J. et al. Impaired Modulation of the Otolithic Function in Acute Unilateral Cerebellar Infarction. Cerebellum 13, 362–371 (2014). https://doi.org/10.1007/s12311-013-0544-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0544-1

Keywords

Navigation