Skip to main content
Log in

Motor Cortex Excitability in Acute Cerebellar Infarct

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Limited evidence to date has demonstrated changes in excitability that develops over the contralateral motor cortex after a cerebellar infarct. As such, the present study investigated changes in excitability over the contra- (contraM1) and ipsilateral motor cortices (ipsiM1), in patients with acute cerebellar infarct, to determine whether the changes may have functional relevance. Paired-pulse transcranial magnetic stimulation, combined with detailed clinical assessment, was undertaken in ten patients presenting with acute unilateral cerebellar infarct. Studies were undertaken within 1 week of ictus and followed longitudinally at 3-, 6-, and 12-month periods. Comparisons were made with 15 age-matched controls. Immediately following a stroke, short-interval intracortical inhibition (SICI) was significantly reduced over the contraM1 in all patients (P = 0.01), while reduced over the ipsiM1 in those with severe functional impairment (P = 0.01). Moreover, ipsiM1 SICI correlated with impairment (r = 0.69, P = 0.03), such that less SICI was observed in those patients with most impairment. Cortical excitability changes persisted over the follow-up period in the context of clinical improvement. Following an acute cerebellar infarct, excitability abnormalities develop over both motor cortices, more prominently in patients with severe functional impairment. The cortical changes, particularly over the ipsilateral motor cortex, may represent a functionally relevant plastic process that may guide future therapeutic strategies to better facilitate recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BI:

Barthel Index

Contra-M1:

Contralateral primary motor cortex

DCN:

Deep cerebellar nuclei

FM:

Fugl–Meyer score

ICF:

Intracortical facilitation

Ipsi-M1:

Ipsilateral primary motor cortex

M1:

Primary motor cortex

MEP:

Motor evoked potential

mRS:

Modified Rankin scale

NIBS:

Non-invasive brain stimulation

NIHSS:

National Institutes of Health Stroke Scale

PICA:

Posterior inferior cerebellar artery

RMT:

Resting motor threshold

SARA:

Scale for the assessment and rating of ataxia

SCA:

Superior cerebellar artery

SICI:

Short-interval intracortical inhibition

tDCS:

Transcranial direct current stimulation

TMS:

Transcranial magnetic stimulation

References

  1. Sultan F et al. Unravelling cerebellar pathways with high temporal precision targeting motor and extensive sensory and parietal networks. Nat Commun. 2012;3:924.

    Article  PubMed  Google Scholar 

  2. Haines DE, Dietrichs E. The cerebellum—structure and connections. Handb Clin Neurol. 2012;103:3–36.

    Article  PubMed  Google Scholar 

  3. Liepert J et al. Motor cortex excitability after cerebellar infarction. Stroke. 2004;35(11):2484–8.

    Article  PubMed  CAS  Google Scholar 

  4. Farias da Guarda SN et al. Interhemispheric asymmetry of corticomotor excitability after chronic cerebellar infarcts. Cerebellum. 2010;9(3):398–404.

    Article  PubMed  Google Scholar 

  5. Butefisch CM et al. Remote changes in cortical excitability after stroke. Brain. 2003;126(Pt 2):470–81.

    Article  PubMed  Google Scholar 

  6. Takeuchi N et al. Correlation of motor function with transcallosal and intracortical inhibition after stroke. Journal of Rehabilitation Medicine. 2010;42(10):962–6.

    Article  PubMed  Google Scholar 

  7. Liepert J et al. Motor cortex disinhibition in acute stroke. Clin Neurophysiol. 2000;111(4):671–6.

    Article  PubMed  CAS  Google Scholar 

  8. Huynh W et al. Longitudinal plasticity across the neural axis in acute stroke. Neurorehabil Neural Repair. 2013;27(3):219–29.

    Article  PubMed  Google Scholar 

  9. Cicinelli P et al. Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke. 2003;34(11):2653–8.

    Article  PubMed  Google Scholar 

  10. Jankelowitz SK, Howells J, Burke D. Plasticity of inwardly rectifying conductances following a corticospinal lesion in human subjects. J Physiol. 2007;581(Pt 3):927–40.

    Article  PubMed  CAS  Google Scholar 

  11. Woodbury ML et al. Longitudinal stability of the Fugl–Meyer assessment of the upper extremity. Arch Phys Med Rehabil. 2008;89(8):1563–9.

    Article  PubMed  Google Scholar 

  12. Fisher RJ et al. Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res. 2002;143(2):240–8.

    Article  PubMed  CAS  Google Scholar 

  13. Vucic S et al. Assessment of cortical excitability using threshold tracking techniques. Muscle Nerve. 2006;33(4):477–86.

    Article  PubMed  Google Scholar 

  14. Vucic S, Kiernan MC. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain. 2006;129(Pt 9):2436–46.

    Article  PubMed  Google Scholar 

  15. Vucic S et al. Cortical dysfunction underlies disability in multiple sclerosis. Mult Scler. 2012;18(4):425–32.

    Article  PubMed  Google Scholar 

  16. Farrar MA et al. Corticomotoneuronal integrity and adaptation in spinal muscular atrophy. Arch Neurol. 2012;69(4):467–73.

    Article  PubMed  Google Scholar 

  17. Huynh W et al. Corticospinal tract dysfunction and development of amyotrophic lateral sclerosis following electrical injury. Muscle Nerve. 2010;42(2):288–92.

    Article  PubMed  Google Scholar 

  18. Huynh W et al. Botulinum toxin modulates cortical maladaptation in post-stroke spasticity. Muscle Nerve. 2012. doi:10.1002/mus.23719.

    PubMed  Google Scholar 

  19. Kiers L et al. Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1993;89(6):415–23.

    Article  PubMed  CAS  Google Scholar 

  20. Luft AR, Manto MU, Ben Taib NO. Modulation of motor cortex excitability by sustained peripheral stimulation: the interaction between the motor cortex and the cerebellum. Cerebellum. 2005;4(2):90–6.

    Article  PubMed  Google Scholar 

  21. Cruz-Martinez A, Arpa J. Transcranial magnetic stimulation in patients with cerebellar stroke. Eur Neurol. 1997;38(2):82–7.

    Article  PubMed  CAS  Google Scholar 

  22. Koch G. Repetitive transcranial magnetic stimulation: a tool for human cerebellar plasticity. Funct Neurol. 2010;25(3):159–63.

    PubMed  Google Scholar 

  23. Ben Taib NO, Manto M. Trains of transcranial direct current stimulation antagonize motor cortex hypoexcitability induced by acute hemicerebellectomy. J Neurosurg. 2009;111(4):796–806.

    Article  PubMed  Google Scholar 

  24. Daskalakis ZJ et al. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557(Pt 2):689–700.

    Article  PubMed  CAS  Google Scholar 

  25. Liepert J et al. Motor cortex excitability in patients with cerebellar degeneration. Clin Neurophysiol. 2000;111(7):1157–64.

    Article  PubMed  CAS  Google Scholar 

  26. Johansson K et al. Can sensory stimulation improve the functional outcome in stroke patients? Neurology. 1993;43(11):2189–92.

    Article  PubMed  CAS  Google Scholar 

  27. Castro AJ, Mihailoff GA. Corticopontine remodelling after cortical and/or cerebellar lesions in newborn rats. J Comp Neurol. 1983;219(1):112–23.

    Article  PubMed  CAS  Google Scholar 

  28. Keller A, Arissian K, Asanuma H. Formation of new synapses in the cat motor cortex following lesions of the deep cerebellar nuclei. Exp Brain Res. 1990;80(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  29. Sanes JN, Donoghue JP. Plasticity and primary motor cortex. Annu Rev Neurosci. 2000;23:393–415.

    Article  PubMed  CAS  Google Scholar 

  30. Sarkisian DS, Metsoian NA, Tsakanian KV. Plastic synaptic reorganization in the sensorimotor cortex of adult cats after destruction of the contralateral nucleus intermedius of the cerebellum. Neirofiziologiia. 1990;22(6):761–71.

    PubMed  CAS  Google Scholar 

  31. Anens E, Kristensen B, Hager-Ross C. Reactive grip force control in persons with cerebellar stroke: effects on ipsilateral and contralateral hand. Exp Brain Res. 2010;203(1):21–30.

    Article  PubMed  Google Scholar 

  32. Nowak DA et al. Interhemispheric transfer of predictive force control during grasping in cerebellar disorders. Cerebellum. 2009;8(2):108–15.

    Article  PubMed  Google Scholar 

  33. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.

    Article  PubMed  Google Scholar 

  34. Krakauer JW et al. Hypoperfusion without stroke alters motor activation in the opposite hemisphere. Ann Neurol. 2004;56(6):796–802.

    Article  PubMed  Google Scholar 

  35. Ward NS. Mechanisms underlying recovery of motor function after stroke. Postgrad Med J. 2005;81(958):510–4.

    Article  PubMed  CAS  Google Scholar 

  36. Fridman EA et al. Reorganization of the human ipsilesional premotor cortex after stroke. Brain. 2004;127(Pt 4):747–58.

    Article  PubMed  Google Scholar 

  37. Johansen-Berg H et al. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A. 2002;99(22):14518–23.

    Article  PubMed  CAS  Google Scholar 

  38. Manganotti P et al. Motor cortical disinhibition during early and late recovery after stroke. Neurorehabilitation & Neural Repair. 2008;22(4):396–403.

    CAS  Google Scholar 

  39. Shimizu T et al. Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain. 2002;125(Pt 8):1896–907.

    Article  PubMed  Google Scholar 

  40. Swayne OB et al. Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cereb Cortex. 2008;18(8):1909–22.

    Article  PubMed  Google Scholar 

  41. Bashir S et al. Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation. Pm & R. 2010;2(12 Suppl 2):S253–68.

    Article  Google Scholar 

  42. Murase N et al. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004;55(3):400–9.

    Article  PubMed  Google Scholar 

  43. Westlake K, Nagarajan S. Functional connectivity in relation to motor performance and recovery after stroke. Front Syst Neurosci. 2011;5:8.

    Article  PubMed  Google Scholar 

  44. Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.

    Article  PubMed  CAS  Google Scholar 

  45. Bury SD, Jones TA. Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the "unaffected" forelimb and training-induced dendritic structural plasticity in the motor cortex. J Neurosci. 2002;22(19):8597–606.

    PubMed  CAS  Google Scholar 

  46. Jones TA, Kleim JA, Greenough WT. Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Research. 1996;733(1):142–8.

    Article  PubMed  CAS  Google Scholar 

  47. Luke LM, Allred RP, Jones TA. Unilateral ischemic sensorimotor cortical damage induces contralesional synaptogenesis and enhances skilled reaching with the ipsilateral forelimb in adult male rats. Synapse. 2004;54(4):187–99.

    Article  PubMed  CAS  Google Scholar 

  48. Gilbert CD, Li W. Adult visual cortical plasticity. Neuron. 2012;75(2):250–64.

    Article  PubMed  CAS  Google Scholar 

  49. Lindenberg R et al. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010;75(24):2176–84.

    Article  PubMed  CAS  Google Scholar 

  50. Takeuchi N, Izumi S. Noninvasive brain stimulation for motor recovery after stroke: mechanisms and future views. Stroke Res Treat. 2012;2012:584727.

    PubMed  Google Scholar 

  51. Reis J et al. Consensus: "Can tDCS and TMS enhance motor learning and memory formation?". Brain Stimul. 2008;1(4):363–9.

    Article  Google Scholar 

  52. Kim YH et al. Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neurosci Lett. 2004;367(2):181–5.

    Article  PubMed  CAS  Google Scholar 

  53. Vines BW, Nair DG, Schlaug G. Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport. 2006;17(6):671–4.

    Article  PubMed  Google Scholar 

  54. Sehm B et al. Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol. 2012;108(12):3253–63.

    Article  PubMed  Google Scholar 

  55. Wessel K. Transcranial magnetic brain stimulation and the cerebellum. Suppl Clin Neurophysiol. 2003;56:441–5.

    Article  PubMed  CAS  Google Scholar 

  56. Hadipour-Niktarash A et al. Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. J Neurosci. 2007;27(49):13413–9.

    Article  PubMed  CAS  Google Scholar 

  57. Muellbacher W et al. Early consolidation in human primary motor cortex. Nature. 2002;415(6872):640–4.

    Article  PubMed  CAS  Google Scholar 

  58. Manto M, Ben Taib NO. A novel approach for treating cerebellar ataxias. Med Hypotheses. 2008;71(1):58–60.

    Article  PubMed  Google Scholar 

  59. Ben Taib NO, Manto M. Effects of anodal transcranial stimulation on the excitability of motor cortex in hemicerebellectomized rats. Eur J Neurol. 2007;14:193–3.

    Google Scholar 

  60. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006;5(8):708–12.

    Article  PubMed  Google Scholar 

  61. Oulad Ben Taib N, Manto M. Hemicerebellectomy impairs the modulation of cutaneomuscular reflexes by the motor cortex following repetitive somatosensory stimulation. Brain Res. 2006;1090(1):110–5.

    Article  PubMed  CAS  Google Scholar 

  62. Oulad Ben Taib N, Manto M. Reinstating the ability of the motor cortex to modulate cutaneomuscular reflexes in hemicerebellectomized rats. Brain Res. 2008;1204:59–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

WH is receiving the postgraduate scholarship from the National Health & Medical Research Council of Australia (NHMRC). AK was supported by an NHMRC Career Development Award (grant 568680).

Conflict of Interest

The authors have no conflicts of interest.

Finanical Disclosure

WH is receiving the NHMRC postgraduate medical scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Huynh or Matthew C. Kiernan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, W., Krishnan, A.V., Vucic, S. et al. Motor Cortex Excitability in Acute Cerebellar Infarct. Cerebellum 12, 826–834 (2013). https://doi.org/10.1007/s12311-013-0493-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0493-8

Keywords

Navigation