Skip to main content

Advertisement

Log in

Migraineurs Without Aura Show Microstructural Abnormalities in the Cerebellum and Frontal Lobe

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The involvement of the cerebellum in migraine pathophysiology is not well understood. We used a biparametric approach at high-field MRI (3 T) to assess the structural integrity of the cerebellum in 15 migraineurs with aura (MWA), 23 migraineurs without aura (MWoA), and 20 healthy controls (HC). High-resolution T1 relaxation maps were acquired together with magnetization transfer images in order to probe microstructural and myelin integrity. Clusterwise analysis was performed on T1 and magnetization transfer ratio (MTR) maps of the cerebellum of MWA, MWoA, and HC using an ANOVA and a non-parametric clusterwise permutation F test, with age and gender as covariates and correction for familywise error rate. In addition, mean MTR and T1 in frontal regions known to be highly connected to the cerebellum were computed. Clusterwise comparison among groups showed a cluster of lower MTR in the right Crus I of MWoA patients vs. HC and MWA subjects (p = 0.04). Univariate and bivariate analysis on T1 and MTR contrasts showed that MWoA patients had longer T1 and lower MTR in the right and left pars orbitalis compared to MWA (p < 0.01 and 0.05, respectively), but no differences were found with HC. Lower MTR and longer T1 point at a loss of macromolecules and/or micro-edema in Crus I and pars orbitalis in MWoA patients vs. HC and vs. MWA. The pathophysiological implications of these findings are discussed in light of recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lipton RB, Stewart WF. Migraine headaches: epidemiology and comorbidity. Clin Neurosci. 1998;5(1):2–9.

    PubMed  CAS  Google Scholar 

  2. Roncolato M et al. An epidemiological study to assess migraine prevalence in a sample of Italian population presenting to their GPs. Eur Neurol. 2000;43(2):102–6.

    Article  PubMed  CAS  Google Scholar 

  3. Warshaw LJ, Burton WN. Cutting the costs of migraine: role of the employee health unit. J Occup Environ Med. 1998;40(11):943–53.

    Article  PubMed  CAS  Google Scholar 

  4. Stewart WF et al. Prevalence of migraine headache in the United States. Relation to age, income, race, and other sociodemographic factors. JAMA. 1992;267(1):64–9.

    Article  PubMed  CAS  Google Scholar 

  5. Vincent M, Hadjikhani N. The cerebellum and migraine. Headache. 2007;47(6):820–33.

    Article  PubMed  Google Scholar 

  6. Sandor PS et al. Subclinical cerebellar impairment in the common types of migraine: a three-dimensional analysis of reaching movements. Ann Neurol. 2001;49(5):668–72.

    Article  PubMed  CAS  Google Scholar 

  7. Wieser T et al. Persistent ocular motor disturbances in migraine without aura. Neurol Sci. 2004;25(1):8–12.

    Article  PubMed  CAS  Google Scholar 

  8. Harno H et al. Subclinical vestibulocerebellar dysfunction in migraine with and without aura. Neurology. 2003;61(12):1748–52.

    Article  PubMed  CAS  Google Scholar 

  9. Rossi C et al. Balance disorders in headache patients: evaluation by computerized static stabilometry. Acta Neurol Scand. 2005;111(6):407–13.

    Article  PubMed  CAS  Google Scholar 

  10. Ishizaki K et al. Static stabilometry in patients with migraine and tension-type headache during a headache-free period. Psychiatry Clin Neurosci. 2002;56(1):85–90.

    Article  PubMed  Google Scholar 

  11. Arkink EB et al. Cerebral perfusion changes in migraineurs: a voxelwise comparison of interictal dynamic susceptibility contrast MRI measurements. Cephalalgia. 2012;32(4):279–88.

    Article  PubMed  Google Scholar 

  12. Crawford JS, Konkol RJ. Familial hemiplegic migraine with crossed cerebellar diaschisis and unilateral meningeal enhancement. Headache. 1997;37(9):590–3.

    Article  PubMed  CAS  Google Scholar 

  13. Lee TG et al. Reversible cerebellar perfusion in familial hemiplegic migraine. Lancet. 1996;348(9038):1383.

    Article  PubMed  CAS  Google Scholar 

  14. Kruit MC et al. Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population-based MRI CAMERA study. Cephalalgia. 2010;30(2):129–36.

    PubMed  CAS  Google Scholar 

  15. van den Maagdenberg AM et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron. 2004;41(5):701–10.

    Article  PubMed  Google Scholar 

  16. Hadjikhani N et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA. 2001;98(8):4687–92.

    Article  PubMed  CAS  Google Scholar 

  17. Woods RP, Iacoboni M, Mazziotta JC. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N Engl J Med. 1994;331(25):1689–92.

    Article  PubMed  CAS  Google Scholar 

  18. Vincent MB, Hadjikhani N. Migraine aura and related phenomena: beyond scotomata and scintillations. Cephalalgia. 2007;27(12):1368–77.

    Article  PubMed  CAS  Google Scholar 

  19. Gold L, Lauritzen M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci USA. 2002;99(11):7699–704.

    Article  PubMed  CAS  Google Scholar 

  20. Moskowitz MA, Macfarlane R. Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc Brain Metab Rev. 1993;5(3):159–77.

    PubMed  CAS  Google Scholar 

  21. Jacquin MF et al. Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res. 1982;246(2):285–91.

    Article  PubMed  CAS  Google Scholar 

  22. Huerta MF, Frankfurter A, Harting JK. Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. J Comp Neurol. 1983;220(2):147–67.

    Article  PubMed  CAS  Google Scholar 

  23. Kruit MC et al. Brain stem and cerebellar hyperintense lesions in migraine. Stroke. 2006;37(4):1109–12.

    Article  PubMed  Google Scholar 

  24. Jin C et al. Structural and functional abnormalities in migraine patients without aura. NMR Biomed. 2013;26(1):58–64.

    Article  PubMed  Google Scholar 

  25. International Headache Conference (IHC). The international classification of headache disorders: 2nd edition. Cephalalgia. 2004;24 suppl 1:9–160.

    Google Scholar 

  26. Klein S et al. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29(1):196–205.

    Article  PubMed  Google Scholar 

  27. Diedrichsen J et al. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46(1):39–46.

    Article  PubMed  Google Scholar 

  28. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33(1):127–38.

    Article  PubMed  Google Scholar 

  29. Diedrichsen J et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. NeuroImage. 2011;54(3):1786–94.

    Article  PubMed  CAS  Google Scholar 

  30. Bullmore ET et al. Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging. 1999;18(1):32–42.

    Article  PubMed  CAS  Google Scholar 

  31. Kober T et al. MP2RAGE multiple sclerosis magnetic resonance imaging at 3 T. Investig Radiol. 2012;47(6):346–52.

    Article  Google Scholar 

  32. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.

    Article  PubMed  Google Scholar 

  33. Roche A et al. On the convergence of EM-like algorithms for image segmentation using Markov random fields. Med Image Anal. 2011;15(6):830–9.

    Article  PubMed  Google Scholar 

  34. Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed. 2001;14(2):57–64.

    Article  PubMed  CAS  Google Scholar 

  35. Deoni SC. Quantitative relaxometry of the brain. Top Magn Reson Imaging. 2010;21(2):101–13.

    Article  PubMed  Google Scholar 

  36. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  Google Scholar 

  37. Moulton EA et al. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J Neurosci. 2011;31(10):3795–804.

    Article  PubMed  CAS  Google Scholar 

  38. Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. NeuroImage. 2012;61(4):805–11.

    Article  PubMed  Google Scholar 

  39. Kringelbach ML, Rolls ET. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004;72(5):341–72.

    Article  PubMed  Google Scholar 

  40. Anders S et al. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele. Brain. 2012;135(Pt 4):1128–40.

    Article  PubMed  Google Scholar 

  41. Sprengelmeyer R et al. Neural structures associated with recognition of facial expressions of basic emotions. Proc Biol Sci. 1998;265(1409):1927–31.

    Article  PubMed  CAS  Google Scholar 

  42. Wildgruber D et al. Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation. Cereb Cortex. 2004;14(12):1384–9.

    Article  PubMed  CAS  Google Scholar 

  43. Ethofer T et al. Decoding of emotional information in voice-sensitive cortices. Curr Biol. 2009;19(12):1028–33.

    Article  PubMed  CAS  Google Scholar 

  44. Lotze M et al. Reduced ventrolateral fMRI response during observation of emotional gestures related to the degree of dopaminergic impairment in Parkinson disease. J Cogn Neurosci. 2009;21(7):1321–31.

    Article  PubMed  Google Scholar 

  45. Eck J et al. Affective brain regions are activated during the processing of pain-related words in migraine patients. Pain. 2011;152(5):1104–13.

    Article  PubMed  Google Scholar 

  46. Moskowitz MA. Basic mechanisms in vascular headache. Neurol Clin. 1990;8(4):801–15.

    PubMed  CAS  Google Scholar 

  47. Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;117(Pt 1):199–210.

    Article  PubMed  Google Scholar 

  48. Boulloche N et al. Photophobia in migraine: an interictal PET study of cortical hyperexcitability and its modulation by pain. J Neurol Neurosurg Psychiatry. 2010;81:978–84.

    Article  PubMed  Google Scholar 

  49. Denuelle M et al. A PET study of photophobia during spontaneous migraine attacks. Neurology. 2011;76(3):213–8.

    Article  PubMed  CAS  Google Scholar 

  50. Lai KL et al. Subcortical hyperexcitability in migraineurs: a high-frequency oscillation study. Can J Neurol Sci. 2011;38(2):309–16.

    PubMed  Google Scholar 

  51. Rogawski MA. Common pathophysiologic mechanisms in migraine and epilepsy. Arch Neurol. 2008;65(6):709–14.

    Article  PubMed  Google Scholar 

  52. Ayata C et al. Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol. 2006;59:652–61.

    Article  PubMed  CAS  Google Scholar 

  53. Merkler D et al. Propagation of spreading depression inversely correlates with cortical myelin content. Ann Neurol. 2009;66(3):355–65.

    Article  PubMed  Google Scholar 

  54. Ambrosini A et al. Familial basilar migraine associated with a new mutation in the ATP1A2 gene. Neurology. 2005;65(11):1826–8.

    Article  PubMed  CAS  Google Scholar 

  55. Ophoff RA et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996;87(3):543–52.

    Article  PubMed  CAS  Google Scholar 

  56. Ducros A et al. Mapping of a second locus for familial hemiplegic migraine to 1q21-q23 and evidence of further heterogeneity. Ann Neurol. 1997;42(6):885–90.

    Article  PubMed  CAS  Google Scholar 

  57. Vanmolkot KR et al. Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol. 2003;54(3):360–6.

    Article  PubMed  CAS  Google Scholar 

  58. Kruit MC et al. Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study. Brain. 2005;128(Pt 9):2068–77.

    Article  PubMed  Google Scholar 

  59. Lotze M, Sauseng P, Staudt M. Functional relevance of ipsilateral motor activation in congenital hemiparesis as tested by fMRI-navigated TMS. Exp Neurol. 2009;217(2):440–3.

    Article  PubMed  CAS  Google Scholar 

  60. Lehericy S et al. Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol. 2004;55(4):522–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Stoicescu Foundation, the Swiss National Science Foundation Grant PZ00P3_131914/1 and by the Centre d'Imagerie BioMédicale (CIBM) of the University of Lausanne (UNIL), the Swiss Federal Institute of Technology Lausanne (EPFL), the University of Geneva (UniGe), the Centre Hospitalier Universitaire Vaudois (CHUV), the Hôpitaux Universitaires de Genève (HUG), and the Leenaards and the Jeantet Foundations.

Conflict of interest

Dr Roche and Dr Krueger work for Siemens AG. The other authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Granziera.

Additional information

C. Granziera, D. Romascano, G. Krueger, and N. Hadjikhani equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granziera, C., Romascano, D., Daducci, A. et al. Migraineurs Without Aura Show Microstructural Abnormalities in the Cerebellum and Frontal Lobe. Cerebellum 12, 812–818 (2013). https://doi.org/10.1007/s12311-013-0491-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0491-x

Keywords

Navigation