Skip to main content
Log in

Effects of Erythropoietin on Frataxin Levels and Mitochondrial Function in Friedreich Ataxia – a Dose–Response Trial

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Friedreich ataxia (FRDA) is an autosomal recessive inherited neurodegenerative disorder leading to reduced expression of the mitochondrial protein frataxin. Previous studies showed frataxin upregulation in FRDA following treatment with recombinant human erythropoietin (rhuEPO). Dose–response interactions between frataxin and rhuEPO have not been studied until to date. We administered escalating rhuEPO single doses (5,000, 10,000 and 30,000 IU) in monthly intervals to five adult FRDA patients. Measurements of frataxin, serum erythropoietin levels, iron metabolism and mitochondrial function were carried out. Clinical outcome was assessed using the “Scale for the assessment and rating of ataxia”. We found maximal erythropoietin serum concentrations 24 h after rhuEPO application which is comparable to healthy subjects. Frataxin levels increased significantly over 3 months, while ataxia rating did not reveal clinical improvement. All FRDA patients had considerable ferritin decrease. NADH/NAD ratio, an indicator of mitochondrial function, increased following rhuEPO treatment. In addition to frataxin upregulation in response to continuous low-dose rhuEPO application shown in previous studies, our results indicate for a long-lasting frataxin increase after single high-dose rhuEPO administration. To detect frataxin-derived neuroprotective effects resulting in clinically relevant improvement, well-designed studies with extended time frame are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104:589–620.

    Article  PubMed  CAS  Google Scholar 

  2. Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med. 2004;82:510–29.

    Article  PubMed  Google Scholar 

  3. Delatycki MB, Paris DB, Gardner RJ, Nicholson GA, Nassif N, Storey E, et al. Clinical and genetic study of Friedreich ataxia in an Australian population. Am J Med Genet. 1999;87:168–74.

    Article  PubMed  CAS  Google Scholar 

  4. Milbrandt TA, Kunes JR, Karol LA. Friedreich’s ataxia and scoliosis: the experience at two institutions. J Pediatr Orthop. 2008;28:234–8.

    Article  PubMed  Google Scholar 

  5. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1423–7.

    Article  PubMed  CAS  Google Scholar 

  6. Pianese L, Turano M, Lo Casale MS, De Biase I, Giacchetti M, Monticelli A, et al. Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J Neurol Neurosurg Psychiatry. 2004;75:1061–3.

    Article  PubMed  CAS  Google Scholar 

  7. Rouault TA, Tong WH. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 2008;24:398–407.

    Article  PubMed  CAS  Google Scholar 

  8. Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet. 1997;17:215–7.

    Article  PubMed  CAS  Google Scholar 

  9. Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci. 2006;26:1269–74.

    Article  PubMed  CAS  Google Scholar 

  10. Siren AL, Fasshauer T, Bartels C, Ehrenreich H. Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics. 2009;6:108–27.

    Article  PubMed  CAS  Google Scholar 

  11. Sturm B, Stupphann D, Kaun C, Boesch S, Schranzhofer M, Wojta J, et al. Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest. 2005;35:711–7.

    Article  PubMed  CAS  Google Scholar 

  12. Boesch S, Sturm B, Hering S, Goldenberg H, Poewe W, Scheiber-Mojdehkar B. Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol. 2007;62:521–4.

    Article  PubMed  CAS  Google Scholar 

  13. Boesch S, Sturm B, Hering S, Scheiber-Mojdehkar B, Steinkellner H, Goldenberg H, et al. Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord. 2008;23:1940–4.

    Article  PubMed  Google Scholar 

  14. Burk K, Malzig U, Wolf S, Heck S, Dimitriadis K, Schmitz-Hubsch T, et al. Comparison of three clinical rating scales in Friedreich ataxia (FRDA). Mov Disord. 2009;24:1779–84.

    Article  PubMed  Google Scholar 

  15. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  CAS  Google Scholar 

  16. Steinkellner H, Scheiber-Mojdehkar B, Goldenberg H, Sturm B. A high throughput electrochemiluminescence assay for the quantification of frataxin protein levels. Anal Chim Acta. 2010;659:129–32.

    Article  PubMed  CAS  Google Scholar 

  17. Cox C, Camus P, Duvivier J. An enzymatic cycling procedure for NAD+ using an irreversible reaction with NAD+-peroxidase. Anal Biochem. 1982;119:185–93.

    Article  PubMed  CAS  Google Scholar 

  18. Oexle H, Gnaiger E, Weiss G. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. Biochim Biophys Acta. 1999;1413:99–107.

    Article  PubMed  CAS  Google Scholar 

  19. Erslev AJ. Erythropoietin titers in health and disease. Semin Hematol. 1991;28:2–7. discussion 7–8.

    PubMed  CAS  Google Scholar 

  20. Heatherington AC. Clinical pharmacokinetic properties of rhuEPO: a review. In: Molineux G, Foot MA, Elliott SG, editors. Erythropoietins and erythropoiesis molecular, cellular, preclinical, and clinical biology. Boston: Birkhäuser Basel; 2003. p. 87–112.

    Google Scholar 

  21. Ramakrishnan R, Cheung WK, Wacholtz MC, Minton N, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J Clin Pharmacol. 2004;44:991–1002.

    Article  PubMed  CAS  Google Scholar 

  22. Sacca F, Piro R, De Michele G, Acquaviva F, Antenora A, Carlomagno G, et al. Epoetin alfa increases frataxin production in Friedreich’s ataxia without affecting hematocrit. Mov Disord. 2010;26:739–42.

    Article  PubMed  Google Scholar 

  23. Means Jr RT. Recent developments in the anemia of chronic disease. Curr Hematol Rep. 2003;2:116–21.

    PubMed  Google Scholar 

  24. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.

    Article  PubMed  CAS  Google Scholar 

  25. Busfield SJ, Tilbrook PA, Callus BA, Spadaccini A, Kuhn L, Klinken SP. Complex regulation of transferrin receptors during erythropoietin-induced differentiation of J2E erythroid cells—elevated transcription and mRNA stabilisation produce only a modest rise in protein content. Eur J Biochem. 1997;249:77–84.

    Article  PubMed  CAS  Google Scholar 

  26. Jelkmann W. Erythropoietin after a century of research: younger than ever. Eur J Haematol. 2007;78:183–205.

    Article  PubMed  CAS  Google Scholar 

  27. Weiss G, Houston T, Kastner S, Johrer K, Grunewald K, Brock JH. Regulation of cellular iron metabolism by erythropoietin: activation of iron-regulatory protein and upregulation of transferrin receptor expression in erythroid cells. Blood. 1997;89:680–7.

    PubMed  CAS  Google Scholar 

  28. Campanella A, Rovelli E, Santambrogio P, Cozzi A, Taroni F, Levi S. Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability: hypothesis for a protective role in Friedreich ataxia. Hum Mol Genet. 2009;18:1–11.

    Article  PubMed  CAS  Google Scholar 

  29. Richardson DR, Huang ML, Whitnall M, Becker EM, Ponka P, Suryo Rahmanto Y. The ins and outs of mitochondrial iron-loading: the metabolic defect in Friedreich’s ataxia. J Mol Med. 2009;88:323–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Austrian National Bank (ÖNB, Jubiläumsfonds), Medical University Innsbruck, Tiroler Landeskrankenanstalten.

Conflicts of Interest

There is no conflict of interest in the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Boesch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachbauer, W., Hering, S., Seifert, M. et al. Effects of Erythropoietin on Frataxin Levels and Mitochondrial Function in Friedreich Ataxia – a Dose–Response Trial. Cerebellum 10, 763–769 (2011). https://doi.org/10.1007/s12311-011-0287-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0287-9

Keywords

Navigation