Skip to main content
Log in

Exposure to an Enriched Environment Accelerates Recovery from Cerebellar Lesion

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The exposure to enriched environments allows the maintenance of normal cognitive functioning even in the presence of brain pathology. Up until now, clinical and experimental studies have investigated environmental effects mainly on the symptoms linked to the presence of neuro-degenerative diseases, and no study has yet analyzed whether prolonged exposure to complex environments allows modifying the clinical expression and compensation of deficits of cerebellar origin. In animals previously exposed to complex stimulations, the effects of cerebellar lesions have been analyzed to verify whether a prolonged and intense exposure to complex stimulations affected the compensation of motor and cognitive functions following a cerebellar lesion. Hemicerebellectomized or intact animals housed in enriched or standard conditions were administered spatial tests. Postural asymmetries and motor behavior were also assessed. Exposure to the enriched environment almost completely compensated the effects of the hemicerebellectomy. In fact, the motor and cognitive performances of the enriched hemicerebellectomized animals were similar to those of the intact animals. The plastic changes induced by enhanced mental and physical activity seem to provide the development of compensatory responses against the disrupting motor and cognitive consequences of the cerebellar damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Borenstein AR, Copenhaver CI, Mortimer JA. Early-life risk factors for Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20:63–72.

    Article  PubMed  Google Scholar 

  2. McDowell I, Xi G, Lindsay J, Tierney M. Mapping the connections between education and dementia. J Clin Exp Neuropsychol. 2007;29:127–41.

    Article  PubMed  Google Scholar 

  3. Green CS, Bavelier D. Exercising your brain: a review of human brain plasticity and training-induced learning. Psychol Aging. 2008;23:692–701.

    Article  CAS  PubMed  Google Scholar 

  4. Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron. 2004;44:195–208.

    Article  CAS  PubMed  Google Scholar 

  5. Arendash GW, Garcia MF, Costa DA, Cracchiolo JR, Wefes IM, Potter H. Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable beta-amyloid deposition. NeuroReport. 2004;15:1751–4.

    Article  PubMed  Google Scholar 

  6. Artola A, von Frijtag JC, Fermont PC, Gispen WH, Schrama LH, Kamal A, et al. Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur J Neurosci. 2006;23:261–72.

    Article  PubMed  Google Scholar 

  7. Ngandu T, von Strauss E, Helkala EL, Winblad B, Nissinen A, Tuomilehto J, et al. Education and dementia: what lies behind the association? Neurology. 2007;69:1442–50.

    Article  CAS  PubMed  Google Scholar 

  8. Normann C, Berger M. Neuroenhancement: status quo and perspectives. Eur Arch Psychiatry Clin Neurosci. 2008;258:110–4.

    Article  PubMed  Google Scholar 

  9. Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol. 2009;89:369–82.

    Article  PubMed  Google Scholar 

  10. Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V, et al. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci. 2005;25:5217–24.

    Article  CAS  PubMed  Google Scholar 

  11. Berardi N, Braschi C, Capsoni S, Cattaneo A, Maffei L. Environmental enrichment delays the onset of memory deficits and reduces neuropathological hallmarks in a mouse model of Alzheimer-like neurodegeneration. J Alzheimers Dis. 2007;11:359–70.

    CAS  PubMed  Google Scholar 

  12. Mandolesi L, De Bartolo P, Foti F, Gelfo F, Federico F, Leggio MG, et al. Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion. J Alzheimers Dis. 2008;15:11–28.

    PubMed  Google Scholar 

  13. Petrosini L, De Bartolo P, Foti F, Gelfo F, Cutuli D, Leggio MG, et al. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res Rev. 2009;61:221–39.

    Article  PubMed  Google Scholar 

  14. Luciani L. Il cervelletto: nuovi studi di fisiologia normale e patologica. Firenze: Le Monnier; 1891.

    Google Scholar 

  15. Holmes G. The cerebellum of man. Brain. 1939;62:1–30.

    Article  Google Scholar 

  16. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  17. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    PubMed  Google Scholar 

  18. Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006;129:290–2.

    Article  PubMed  Google Scholar 

  19. Thach WT. Context-response linkage. Int Rev Neurobiol. 1997;41:599–611.

    Article  CAS  PubMed  Google Scholar 

  20. Thach WT. A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem. 1998;70:177–88.

    Article  CAS  PubMed  Google Scholar 

  21. Thach WT. On the mechanism of cerebellar contributions to cognition. Cerebellum. 2007;6:163–7.

    Article  CAS  PubMed  Google Scholar 

  22. Drepper J, Timmann D, Kolb FP, Diener HC. Non-motor associative learning in patients with isolated degenerative cerebellar disease. Brain. 1999;122:87–97.

    Article  PubMed  Google Scholar 

  23. Ito M. Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann NY Acad Sci. 2002;978:273–88.

    Article  PubMed  Google Scholar 

  24. Molinari M, Petrosini L, Misciagna S, Leggio MG. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry. 2004;75:235–40.

    CAS  PubMed  Google Scholar 

  25. Golla H, Thier P, Haarmeier T. Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain. 2005;128:1525–35.

    Article  PubMed  Google Scholar 

  26. Ziemus B, Baumann O, Luerding R, Schlosser R, Schuierer G, Bogdahn U, et al. Impaired working-memory after cerebellar infarcts paralleled by changes in BOLD signal of a cortico-cerebellar circuit. Neuropsychologia. 2007;45:2016–24.

    Article  CAS  PubMed  Google Scholar 

  27. Amrani K, Dykes RW, Lamarre Y. Bilateral contributions to motor recovery in the monkey following lesions of the deep cerebellar nuclei. Brain Res. 1996;740:275–84.

    Article  CAS  PubMed  Google Scholar 

  28. Armano S, Rossi P, Taglietti V, D’Angelo E. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. J Neurosci. 2000;20:5208–16.

    CAS  PubMed  Google Scholar 

  29. Casado M, Isope P, Ascher P. Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron. 2002;33:123–30.

    Article  CAS  PubMed  Google Scholar 

  30. Federico F, Leggio MG, Mandolesi L, Petrosini L. The NMDA receptor antagonist CGS 19755 disrupts recovery following cerebellar lesions. Restor Neurol Neurosci. 2006a;24:1–7.

    CAS  Google Scholar 

  31. Centonze D, Rossi S, De Bartolo P, De Chiara V, Foti F, Musella A, et al. Adaptations of glutamatergic synapses in the striatum contribute to recovery from cerebellar damage. Eur J Neurosci. 2008;27:2188–96.

    Article  PubMed  Google Scholar 

  32. Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–3.

    Article  CAS  PubMed  Google Scholar 

  33. Petrosini L, Molinari M, Dell’Anna ME. Cerebellar contribution to spatial event processing: Morris water maze and T-maze. Eur J Neurosci. 1996;8:1882–96.

    Article  CAS  PubMed  Google Scholar 

  34. Federico F, Leggio MG, Neri P, Mandolesi L, Petrosini L. NMDA receptor activity in learning spatial procedural strategies II. The influence of cerebellar lesions. Brain Res Bull. 2006b;70:356–67.

    Article  CAS  Google Scholar 

  35. Mandolesi L, Leggio MG, Graziano A, Neri P, Petrosini L. Cerebellar contribution to spatial event processing: involvement in procedural and working memory components. Eur J Neurosci. 2001;14:2011–22.

    Article  CAS  PubMed  Google Scholar 

  36. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. San Diego: Academic; 1998.

    Google Scholar 

  37. Milgram NW, Siwak-Tapp CT, Arahujo J, Head E. Neuroprotective effects of cognitive enrichment. Ageing Res Rev. 2006;5:354–69.

    Article  PubMed  Google Scholar 

  38. Bennett EL. krech D, Rosenzweig MR. Reliability and regional specificity of cerebral effects of environmental complexity and training. J Comp Physiol Psychol. 1964;57:440–1.

    Article  CAS  PubMed  Google Scholar 

  39. van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Rev Neurosci. 2000;1:191–8.

    Article  PubMed  Google Scholar 

  40. Greenough WT, Volkmar FR, Juraska J. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Exp Neurol. 1973;41:371–8.

    Article  CAS  PubMed  Google Scholar 

  41. van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ. Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci. 2008;9:34.

    Article  PubMed  Google Scholar 

  42. Hicks RR, Zhang L, Atkinson A, Stevenon M, Veneracion M, Seroogy KB. Environmental enrichment attenuates cognitive deficits but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury. Neuroscience. 2002;112:631–7.

    Article  CAS  PubMed  Google Scholar 

  43. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493–5.

    Article  CAS  PubMed  Google Scholar 

  44. Kempermann G. The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 2008;31:163–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kondo M, Gray LJ, Pelka GJ, Christodoulou J, Tam PP, Hannan AJ. Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome–Mecp2 gene dosage effects and BDNF expression. Eur J Neurosci. 2008;27:3342–50.

    Article  PubMed  Google Scholar 

  46. Nag N, Moriuchi JM, Peitzman CG, Ward BC, Kolodny NH, Berger-Sweeney JE. Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav Brain Res. 2009;196:44–8.

    Article  PubMed  Google Scholar 

  47. van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ. Delaying the onset of Huntington’s in mice. Nature. 2000;404:721–2.

    Article  PubMed  Google Scholar 

  48. Spires TL, Grote HE, Varshney NK, Cordery PM, van Dellen A, Blakemore C, et al. Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci. 2004;24:2270–6.

    Article  CAS  PubMed  Google Scholar 

  49. Lazic SE, Grote HE, Blakemore C, Hannan AJ, van Dellen A, Phillips W, et al. Neurogenesis in the R6/1 transgenic mouse model of Huntington’s disease: effects of environmental enrichment. Eur J Neurosci. 2006;23:1829–38.

    Article  PubMed  Google Scholar 

  50. De Bartolo P, Leggio MG, Mandolesi L, Foti F, Gelfo F, Ferlazzo F, et al. Environmental enrichment mitigates the effects of basal forebrain lesions on cognitive flexibility. Neuroscience. 2008;154:444–53.

    Article  PubMed  Google Scholar 

  51. Richards M, Hardy R, Wadsworth ME. Does active leisure protect cognition? Evidence from a national birth cohort. Soc Sci Med. 2003;56:785–92.

    Article  PubMed  Google Scholar 

  52. Richards M, Deary IJ. A life course approach to cognitive reserve: a model for cognitive aging and development? Ann Neurol. 2005;58:617–22.

    Article  PubMed  Google Scholar 

  53. Leggio MG, Neri P, Graziano A, Mandolesi L, Molinari M, Petrosini L. Cerebellar contribution to spatial event processing: characterization of procedural learning. Exp Brain Res. 1999;127:1–11.

    Article  CAS  PubMed  Google Scholar 

  54. Rondi-Reig L, Le Marec N, Caston J, Mariani J. The role of climbing and parallel fibers inputs to cerebellar cortex in navigation. Behav Brain Res. 2002;132:11–8.

    Article  PubMed  Google Scholar 

  55. Gasbarri A, Pompili A, Pacitti C, Cicirata F. Comparative effects of lesions to the ponto-cerebellar and olivo-cerebellar pathways on motor and spatial learning in the rat. Neuroscience. 2003;116:1131–40.

    Article  CAS  PubMed  Google Scholar 

  56. Colombel C, Lalonde R, Caston J. The effects of unilateral removal of the cerebellar hemispheres on spatial learning and memory in rats. Brain Res. 2004;1004:108–15.

    Article  CAS  PubMed  Google Scholar 

  57. Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, et al. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res. 2005;163:78–90.

    Article  PubMed  Google Scholar 

  58. Bambico FR, Cassano T, Dominguez-Lopez S, Katz N, Walker CD, Piomelli D, et al. Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology. 2010;35:2083–100.

    Article  CAS  PubMed  Google Scholar 

  59. Long LE, Chesworth R, Arnold JC, Karl T. A follow-up study: acute behavioural effects of Delta(9)-THC in female heterozygous neuregulin 1 transmembrane domain mutant mice. Psychopharmacology. 2010;211:277–89.

    Article  CAS  PubMed  Google Scholar 

  60. Harris AP, D’Eath RB, Healy SD. Environmental enrichment enhances spatial cognition in rats by reducing thigmotaxis (wall hugging) during testing. Anim Behav. 2009;77:1459–64.

    Article  Google Scholar 

  61. Mandolesi L, Leggio MG, Spirito F, Petrosini L. Cerebellar contribution to spatial event processing: do spatial procedures contribute to formation of spatial declarative knowledge? Eur J Neurosci. 2003;18:2618–26.

    Article  CAS  PubMed  Google Scholar 

  62. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    CAS  PubMed  Google Scholar 

  63. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303.

    Article  PubMed  Google Scholar 

  64. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    Article  CAS  PubMed  Google Scholar 

  65. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71:44–56.

    Article  CAS  PubMed  Google Scholar 

  66. Hyder F, Phelps EA, Wiggins CJ, Labar KS, Blamire AM, Shulman RG. “Willed action”: a functional MRI study of the human prefrontal cortex during a sensorimotor task. Proc Natl Acad Sci USA. 1997;94:6989–94.

    Article  CAS  PubMed  Google Scholar 

  67. Spence SA, Hirsch SR, Brooks DJ, Grasby PM. Prefrontal cortex activity in people with schizophrenia and control subjects. Evidence from positron emission tomography for remission of ‘hypofrontality’ with recovery from acute schizophrenia. Br J Psychiatry. 1998;172:316–23.

    Article  CAS  PubMed  Google Scholar 

  68. Pochon JB, Levy R, Poline JB, Crozier S, Lehericy S, Pillon B, et al. The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb Cortex. 2001;11:260–6.

    Article  CAS  PubMed  Google Scholar 

  69. Foti F, Mandolesi L, Cutuli D, Laricchiuta D, De Bartolo P, Gelfo F, et al. Cerebellar damage loosens the strategic use of the spatial structure of the search space. Cerebellum. 2010;9:29–41.

    Article  PubMed  Google Scholar 

  70. De Bartolo P, Mandolesi L, Federico F, Foti F, Cutuli D, Gelfo F, et al. Cerebellar involvement in cognitive flexibility. Neurobiol Learn Mem. 2009;92:310–7.

    Article  PubMed  Google Scholar 

  71. Mandolesi L, Foti F, Cutuli D, Laricchiuta D, Gelfo F, De Bartolo P, et al. Features of sequential learning in hemicerebellectomized rats. J Neurosci Res. 2010;88:478–86.

    CAS  PubMed  Google Scholar 

  72. Pham TM, Ickes B, Albeck D, Soderstrom S, Granholm AC, Mohammed AH. Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year. Neuroscience. 1999;94:279–86.

    Article  CAS  PubMed  Google Scholar 

  73. Young D, Lawlor PA, Leone P, Dragunow M, During MJ. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med. 1999;5:448–53.

    Article  CAS  PubMed  Google Scholar 

  74. Zajac MS, Pang TY, Wong N, Weinrich B, Leang LS, Craig JM, et al. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington’s disease mice. Hippocampus. 2010;20:621–36.

    CAS  PubMed  Google Scholar 

  75. Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol. 2000;64:45–52.

    Article  Google Scholar 

  76. Angelucci F, De Bartolo P, Gelfo F, Foti F, Cutuli D, Bossu P, et al. Increased concentrations of nerve growth factor and brain-derived neurotrophic factor in the rat cerebellum after exposure to environmental enrichment. Cerebellum. 2009;8:499–506.

    Article  CAS  PubMed  Google Scholar 

  77. Gelfo F, Cutuli D, Foti F, Laricchiuta D, De Bartolo P, Caltagirone C, et al. Enriched environment improves motor function and increases neurotrophins in hemicerebellar lesioned rats. Neurorehabil Neural Repair. 2010. doi:10.1177/1545968310380926

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by MIUR grants to LP.

Conflicts of interest

All the authors have approved the manuscript that is enclosed and fully disclose all conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Petrosini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foti, F., Laricchiuta, D., Cutuli, D. et al. Exposure to an Enriched Environment Accelerates Recovery from Cerebellar Lesion. Cerebellum 10, 104–119 (2011). https://doi.org/10.1007/s12311-010-0236-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0236-z

Keywords

Navigation