Skip to main content

Advertisement

Log in

1,2,5,6,9,10-αHexabromocyclododecane (HBCD) Impairs Thyroid Hormone-Induced Dendrite Arborization of Purkinje Cells and Suppresses Thyroid Hormone Receptor-Mediated Transcription

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

1,2,5,6,9,10-αHexabromocyclododecane (HBCD) is a nonaromatic, brominated cyclic alkane used as an additive flame retardant. It bioaccumulates, persists in the environment, and has been detected in humans and wildlife. Its developmental neurotoxicity is of great concern. We investigated the effect of HBCD on thyroid hormone (TH) receptor (TR)-mediated transcription using transient transfection-based reporter gene assays and found that a low-dose (10−10 M) HBCD suppressed TR-mediated transcription. We further examined the effect of HBCD on interaction of TR with TH response element (TRE) and found a partial dissociation of TR from TRE. HBCD did not dissociate steroid receptor coactivator-1 from TR in the presence of TH; neither did it recruit corepressors (N-CoR and SMRT) to TR in the absence of TH. Furthermore, low-dose HBCD (10−10 M) significantly suppressed TH-induced dendrite arborization of Purkinje cells in primary cerebellar culture derived from newborn rat. These results show that low-dose HBCD can potentially disrupt TR-mediated transactivation and impairs Purkinje cell dendritogenesis, suggesting that HBCD can interfere with TH action in target organs, including the developing brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Wit CA. An overview of brominated flame retardants in the environment. Chemosphere. 2002;46:583–624.

    Article  PubMed  Google Scholar 

  2. Law RJ, Kohler M, Heeb NV, Gerecke AC, Schmid P, Voorspoels S, et al. Hexabromocyclododecane challenges scientists and regulators. Environ Sci Technol. 2005;39:281A–7A.

    Article  CAS  PubMed  Google Scholar 

  3. Hale RC, La Guardia MJ, Harvey E, Gaylor MO, Mainor TM. Brominated flame retardant concentrations and trends in abiotic media. Chemosphere. 2006;64:181–6.

    Article  CAS  PubMed  Google Scholar 

  4. Law RJ, Herzke D, Harrad S, Morris S, Bersuder P, Allchin CR. Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs. Chemosphere. 2008;73:223–42.

    Article  CAS  PubMed  Google Scholar 

  5. van der Ven LT, Verhoef A, van der Kuil T, Slob W, Leonard PE, Visser TJ, et al. A 28-day oral dose toxicity study enhanced to detect the endocrine effects of hexabromocyclododecane in Wister rats. Toxicol Sci. 2006;94:281–92.

    Article  PubMed  Google Scholar 

  6. Eriksson P, Viberg H, Fischer C, Wallin M, Fredriksson A. A comparison on developmental neurotoxic effects of hexabromocyclododecane,2,2’,4,4’,5,5’-hexabromodiphenylether (PBDE153) and 2,2’,4,4’,5,5’-hexachlorobiphenyl (PCB153). Organohalo Comp. 2002;57:389–92.

    CAS  Google Scholar 

  7. Germer S, Piersma A, van der Ven L, Kamyschnikow A, Fery Y, Schmitz H, et al. Subacute effects of the brominated flame retardant hexabromocyclododecane and tetrabromobisphenol-A on hepatic cytochrome P450 levels in rats. Toxicology. 2006;218:229–36.

    Article  CAS  PubMed  Google Scholar 

  8. Mariussen E, Fonnum F. The effect of brominated flame retardants on neurotransmitter uptake into rat synaptosomes and vesicles. Neurochem Int. 2003;43:533–42.

    Article  CAS  PubMed  Google Scholar 

  9. Yamada-Okabe T, Sakai H, Kashima Y, Yamada-Okabe H. Modulation at a cellular level of the thyroid hormone receptor mediated gene expression by 1,2,5,6,9,10-hexabromocyclododecane (HBCD), 4,4’-diiodobiphenyl (DIB), and nitrofen (NIP). Toxicol Lett. 2005;155:127–33.

    Article  CAS  PubMed  Google Scholar 

  10. Thomsen C, FrØshaug M, Broadwell SL, EggesbØ M. Levels of brominated flame retardants in milk from the Norwegian human milk study: HUMIS. Organohal Comp. 2005;67:509–12.

    Google Scholar 

  11. Shi ZX, Wu YN, Li JG, Zhao YF, Feng JF. Dietary exposure assesment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecane: occurence measurements in food and human milk. Environ Sci Technol. 2009;43:4314–9.

    Article  CAS  PubMed  Google Scholar 

  12. Potterfield SP, Hendrich CE. The role of thyroid hormones in prenatal and neonatal neurologic development: current perspectives. Endocr Rev. 1993;14:94–106.

    Google Scholar 

  13. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3:79–83.

    Article  CAS  PubMed  Google Scholar 

  14. Koibuchi N, Chin WW. Thyroid hormone action and brain development. Trends Endocrinol Metab. 2000;11:123–8.

    Article  CAS  PubMed  Google Scholar 

  15. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81:1097–142.

    CAS  PubMed  Google Scholar 

  16. Haddow JE, Palomoki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. Maternal thyroid deficiency during pregnancy and subsequent development of the child. New Engl J Med. 1999;341:549–55.

    Article  CAS  PubMed  Google Scholar 

  17. Bradley DJ, Towle HC, Young WS. Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β2-subtype, in the developing mammaliam nervous system. J Neurosci. 1992;12:2288–302.

    CAS  PubMed  Google Scholar 

  18. Koibuchi N. The role of thyroid hormone on cerebellar development. Cerebellum. 2008;7:530–3.

    Article  CAS  PubMed  Google Scholar 

  19. Haukas M, Mauriussen E, Ruus A, Tollesfen KE. Accumulation and disposition of hexabromocyclododecane (HBCD) in juvenile rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology. 2009;95:144–51.

    Article  PubMed  Google Scholar 

  20. Ito M. Historical review of the significance of the cerebellum and the role of the Purkinje cells in motor learning. Ann NY Acad Sci. 2002;978:273–8.

    Article  PubMed  Google Scholar 

  21. Hirai H. Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. Cerebellum. 2008;7:273–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nicholson JL, Altman J. Synaptogenesis in the rat cerebellum: effects of early hypo- and hyperthyroidism. Science. 1972;176:530–2.

    Article  CAS  PubMed  Google Scholar 

  23. Kimura-Kuroda J, Nagata I, Negishi-Kato M, Kuroda Y. Thyroid hormone-dependent development of mouse cerebellar Purkinje cells in vitro. Dev Brain Res. 2002;137:55–65.

    Article  CAS  Google Scholar 

  24. Iwasaki T, Chin WW, Ko L. Identification and characterization of RRM-containing coactivator activator (CoAA) as TRBP-interacting protein and its splice variant as a coactivator modulator (CoAM). J Biol Chem. 2001;276:33375–83.

    Article  CAS  PubMed  Google Scholar 

  25. Koibuchi N, Liu Y, Fukuda H, Takeshita A, Yen PM, Chin WW. ROR augments thyroid hormone receptor-mediated transcriptional activation. Endocrinology. 1999;140:1356–64.

    Article  CAS  PubMed  Google Scholar 

  26. Takeshita A, Yen PM, Ikeda M, Cardona GR, Liu Y, Koibuchii N, et al. Thyroid hormone response elements differentially modulate the interactions of thyroid hormone receptor with two receptor binding domain in the steroid receptor coactivator-1. J Biol Chem. 1998;273:21554–62.

    Article  CAS  PubMed  Google Scholar 

  27. Takeshita A, Taguchi M, Koibuchi N, Ozawa Y. Putative role of the orphan nuclear receptor SXR (steroid and xenobiotic receptor) in the mechanism of CYP3A4 inhibition by xenobiotics. J Biol Chem. 2002;277:32453–8.

    Article  CAS  PubMed  Google Scholar 

  28. Iwasaki T, Miyazaki W, Takeshita A, Kuroda Y, Koibuchi N. Polychlorinated biphenyls suppress thyroid hormone-induced transactivation. Biochem Biophys Res Commun. 2002;298:384–8.

    Article  Google Scholar 

  29. Jiang D, Sullivan PG, Sensi SL, Steward O, Wises JH. Zn (2+) induces permeability transition pore opening and release of pro-apoptotic peptodes from neuronal membrane. J Biol Chem. 2001;276:47524–9.

    Article  CAS  PubMed  Google Scholar 

  30. Iwasaki T, Miyazaki W, Rokutanda N, Koibuchi N. Liquid chemiluminescent DNA pull-down assay to measure nuclear receptor-DNA binding in solution. Biotechniques. 2008;45:445–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kimura-Kuroda J, Nagata I, Kuroda Y. Disrupting effects of hydroxlated-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells: a possible causal factor for developmental brain disorders? Chemosphere. 2007;67:412–20.

    Article  Google Scholar 

  32. Miyazaki W, Iwasaki T, Takeshita A, Kuroda Y, Koibuchi N. Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. J Biol Chem. 2004;279:18195–202.

    Article  CAS  PubMed  Google Scholar 

  33. Miyazaki W, Iwasaki T, Takeshita A, Tohyama C, Koibuchi N. Identification of the functional domain of thyroid hormone receptor responsible for polychlorinated biphenyl-mediated suppression of its action in vitro. Environ Health Perspect. 2008;116:1231–6.

    Article  CAS  PubMed  Google Scholar 

  34. Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab. 2002;87:5158–90.

    Article  Google Scholar 

  35. Safe SH. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol. 1994;24:87–149.

    Article  CAS  PubMed  Google Scholar 

  36. Koibuchi N, Jingu H, Iwasaki T, Chin WW. Current perspectives on the role of thyroid hormone in growth and development of the cerebellum. Cerebellum. 2003;2:279–89.

    Article  CAS  PubMed  Google Scholar 

  37. Strait KA, Schwartz HL, Seybold VS, Ling NC, Oppenheimer JH. Immunofluoresecence localization of thyroid hormone receptor protein β1 and α2 in selscted tissues: cerebellar Purkinje cells as a model for β1 receptor-mediated developmental effects of thyroid hormone in brain. Proc Natl Acad Sci USA. 1991;88:3887–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Drs. W. Miyazaki, J. Kimura-Kuroda, T. Aoki, K. Takata, K. Hanamura, and T. Shirao for helpful assistance, and Dr. A. Takeshita for kindly providing plasmids. This project was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (17510039, T.I, 17390060, N.K), and a grant from Ministry of the Environment of Japan (to N.K, T.I, and N.S).

Competing interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Iwasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibhazehiebo, K., Iwasaki, T., Shimokawa, N. et al. 1,2,5,6,9,10-αHexabromocyclododecane (HBCD) Impairs Thyroid Hormone-Induced Dendrite Arborization of Purkinje Cells and Suppresses Thyroid Hormone Receptor-Mediated Transcription. Cerebellum 10, 22–31 (2011). https://doi.org/10.1007/s12311-010-0218-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0218-1

Keywords

Navigation