Skip to main content
Log in

Orexins Excite Neurons of the Rat Cerebellar Nucleus Interpositus Via Orexin 2 Receptors In Vitro

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Orexins are newfound hypothalamic neuropeptides implicated in the regulation of feeding behavior, sleep–wakefulness cycle, nociception, addiction, emotions, as well as narcolepsy. However, little is known about roles of orexins in motor control. Therefore, the present study was designed to investigate the effect of orexins on neuronal activity in the cerebellum, an important subcortical center for motor control. In this study, perfusing slices with orexin A (100 nM–1 μM) or orexin B (100 nM–1 μM) both produced neurons in the rat cerebellar interpositus nucleus (IN) a concentration-dependent excitatory response (96/143, 67.1%). Furthermore, both of the excitations induced by orexin A and B were not blocked by the low-Ca2+/high-Mg2+ medium (n = 8), supporting a direct postsynaptic action of the peptides. Highly selective orexin 1 receptor antagonist SB-334867 did not block the excitatory response of cerebellar IN neurons to orexins (n = 22), but [Ala11, D-Leu15] orexin B, a highly selective orexin 2 receptor (OX2R) agonist, mimicked the excitatory effect of orexins on the cerebellar neurons (n = 18). These results demonstrate that orexins excite the cerebellar IN neurons through OX2R and suggest that the central orexinergic nervous system may actively participate in motor control through its modulation on one of the final outputs of the spinocerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JS, Buckingham RE, Haynes AC, Carr SA, Annan RS, Mcnulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  CAS  PubMed  Google Scholar 

  2. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327

    Article  PubMed  Google Scholar 

  3. Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    Article  CAS  PubMed  Google Scholar 

  4. Kukkonen JP, Holmqvist T, Ammoun S, Åkerman KE (2002) Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol 283:C1567–C1591

    CAS  PubMed  Google Scholar 

  5. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    CAS  PubMed  Google Scholar 

  6. Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamicpeptides, interact with autonomic, neuroendocrine, and neuroregulatory systems. Proc Natl Acad Sci U S A 96:748–753

    Article  CAS  PubMed  Google Scholar 

  7. Cutler DJ, Morris R, Sheridhar V, Wattam TAK, Holmes S, Patel S, Arch JR, Wilson S, Buckingham RE, Evans ML, Leslie RA, Williams G (1999) Differential distribution of orexin-A and orexin-B immunoreactivity in the rat brain and spinal cord. Peptides 20:1455–1470

    Article  CAS  PubMed  Google Scholar 

  8. Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis CE, Middlemiss DN, Brown F (1999) Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol 128:1–3

    Article  CAS  PubMed  Google Scholar 

  9. Dube MG, Kalra SP, Kalra PS (1999) Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res 842:473–477

    Article  CAS  PubMed  Google Scholar 

  10. Hervieu GJ, Cluderay JE, Harrison DC, Roberts JC, Leslie RA (2001) Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience 103:777–797

    Article  CAS  PubMed  Google Scholar 

  11. Cluderay JE, Harrison DC, Hervieu GJ (2002) Protein distribution of the orexin-2 receptor in the rat central nervous system. Regul Pept 104:131–144

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Karteris E, Collins D, Randeva HS (2006) Differential expression of mouse orexin receptor type-2 (OX2R) variants in the mouse brain. Brain Res 1103:20–24

    Article  CAS  PubMed  Google Scholar 

  13. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, Amsterdam

    Google Scholar 

  14. Tian L, Wen YQ, Zuo CC, Wang JJ (2000) Histamine excites rat cerebellar Purkinje cells via H2 receptors in vitro. Neurosci Res 36:61–66

    Article  CAS  PubMed  Google Scholar 

  15. Shen B, Li HZ, Wang JJ (2002) Excitatory effects of histamine on cerebellar interpositus nuclear cells of rats through H2 receptors in vitro. Brain Res 948:64–71

    Article  CAS  PubMed  Google Scholar 

  16. Chen K, Li HZ, Ye N, Zhang J, Wang JJ (2005) Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro. Brain Res Bull 67:310–318

    Article  CAS  PubMed  Google Scholar 

  17. Aizenman CD, Huang EJ, Linden DJ (2003) Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. J Neurophysiol 89:1738–1747

    Article  PubMed  Google Scholar 

  18. Stehle J (1991) Effects of histamine on spontaneous electrical activity of neurons in rat suprachiasmatic nucleus. Neurosci Lett 130:217–220

    Article  CAS  PubMed  Google Scholar 

  19. Dutia MB, Johnston AR, McQueen DS (1992) Tonic activity of rat medial vestibular nucleus neurones in vitro and its inhibition by GABA. Exp Brain Res 88:466–472

    Article  CAS  PubMed  Google Scholar 

  20. Asahi S, Egashira S, Matsuda M, Iwaasa H, Kanatani A, Ohkubo M, Ihara M, Morishima H (2003) Development of an orexin-2 receptor selective agonist, [Ala11, D-Leu15] Orexin-B. Bioorg Med Chem Lett 13:111–113

    Article  CAS  PubMed  Google Scholar 

  21. van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrineneurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 18:7962–7971

    PubMed  Google Scholar 

  22. Rauch M, Riediger T, Schmid HA, Simon E (2000) Orexin A activatesleptin-responsive neurons in the arcuate nucleus. Pflugers Arch 440:699–703

    Article  CAS  PubMed  Google Scholar 

  23. Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 21:9273–9279

    CAS  PubMed  Google Scholar 

  24. Baldo BA, Gual-Bonilla L, Sijapati K, Daniel RA, Landry CF, Kelley AE (2004) Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J NeuroSci 19:376–386

    Article  PubMed  Google Scholar 

  25. Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van den Pol AN (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 415:145–159

    Article  CAS  PubMed  Google Scholar 

  26. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2002) Muscle tone facilitation and inhibition after orexin-a (hypocretin-1) microinjections into the medial medulla. J Neurophysiol 87:2480–2489

    CAS  PubMed  Google Scholar 

  27. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    Article  CAS  PubMed  Google Scholar 

  28. Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y (2005) Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 568:1003–1020

    Article  CAS  PubMed  Google Scholar 

  29. Ito M (2009) Functional roles of neuropeptides in cerebellar circuits. Neuroscience 162:666–672

    Article  CAS  PubMed  Google Scholar 

  30. Eriksson KS, Sergeeva OA, Haas HL, Selbach O (2009) Orexins/hypocretins and aminergic systems. Acta Physiol (Oxf). doi:10.1111/j.1748-1716.2009.02015.x

    Google Scholar 

  31. Bloedel JR, Courville J (1981) A review of cerebellar afferent systems. In: Brooks VB (ed) Handbook of physiology. Motor control, vol II. Williams and Wilkins, Baltimore, pp 735–830

    Google Scholar 

  32. Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  33. Llinás RR, Walton KD, Lang EJ (2004) Cerebellum. In: Shepherd GM (ed) The synaptic organization of the brain, 5th edn. Oxford University Press, New York, pp 271–309

    Google Scholar 

  34. Soteropoulos DS, Baker SN (2008) Bilateral representation in the deep cerebellar nuclei. J Physiol 586:1117–1136

    Article  CAS  PubMed  Google Scholar 

  35. Martin JH, Cooper SE, Hacking A, Ghez C (2000) Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J Neurophysiol 83:1886–1899

    CAS  PubMed  Google Scholar 

  36. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF (1997) The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol 41:83–107

    Article  CAS  PubMed  Google Scholar 

  37. Zhu JN, Yung WH, Chow BKC, Chan YS, Wang JJ (2006) The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52:93–106

    Article  PubMed  Google Scholar 

  38. Zhu JN, Wang JJ (2008) The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol 28:469–478

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants 30370462, 30670671, 30700201, and NSFC/RGC Joint Research Scheme 30910267 from the National Natural Science Foundation of China, RFDP grants 20050284025 and 20070284057 from the State Educational Ministry of China, and grant BK2006713 from the Natural Science Foundation of Jiangsu Province, China. The work was also partially supported by the 111 Project of the state Educational Ministry of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Ning Zhu or Jian-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Zhang, XY., Zhang, J. et al. Orexins Excite Neurons of the Rat Cerebellar Nucleus Interpositus Via Orexin 2 Receptors In Vitro. Cerebellum 9, 88–95 (2010). https://doi.org/10.1007/s12311-009-0146-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0146-0

Keywords

Navigation