Skip to main content

Advertisement

Log in

Extracerebellar MRI—Lesions in Ataxia Telangiectasia Go Along with Deficiency of the GH/IGF-1 Axis, Markedly Reduced Body Weight, High Ataxia Scores and Advanced Age

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Ataxia telangiectasia (AT) is a rare autosomal recessive disorder characterized by progressive ataxia, neurodegeneration, immunodeficiency, and cancer predisposition. Pathoanatomical studies reported a degeneration of cerebellar Purkinje cells as the striking feature of the disease. Although recent studies suggested the involvement of extracerebellar structures such as the brainstem and basal ganglia, this has rarely been studied in human AT. Thus, we performed a detailed cliniconeuroradiological investigation of 11 AT patients, aged 8 to 26 years by collecting clinical neurological data, ataxia scores, growth status, body mass index (BMI), growth hormone (GH), and insulin-like-growth factor 1 (IGF-1) and correlated them to extracerebellar neuroimaging findings in human AT. Neuroimaging was done by cranial and spine magnetic resonance imaging (MRI) with T1- and T2-weighted spin-echo and fluid attenuated inversion recovery sequences. We compared clinical and neuroradiological findings of six patients with IGF-1 levels and BMI below the third percentile to five patients with normal IGF-1 serum levels and BMI above the third percentile. Three of the six first mentioned patients older than 20 years and two patients older than 12 years showed noticeable high Klockgether ataxia scores above 25 points. Three of these patients presented with marked hyperintense lesions in the cerebral white matter of T2-weighted MR images. Interestingly, all six patients suffered from marked spinal atrophy. Two of the patients presented with severe extra-pyramidal symptoms, but only one patient showed associated MRI abnormalities of the basal ganglia. MRI in patients with normal IGF-1 levels showed the expected cerebellar lesions in four patients, whereas spinal atrophy was found only in two patients. There was no affection of the cerebral white matter or basal ganglia in this group. We conclude that central cerebral white matter affection, spinal atrophy, and extrapyramidal symptoms are more often present in patients with pronounced deficiency of the GH/IGF-1 axis accompanied by markedly reduced body weight and high ataxia scores. This may point to a major role of IGF-1 and nutritional status in neuroprotective signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Boder E (1985) Ataxia telangiectasia: an overview. Kroc Found Ser 19:1–63

    CAS  PubMed  Google Scholar 

  2. Boder E, Sedgwick RP (1958) Ataxia telangiectasia. A familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 21(4):526–554

    CAS  PubMed  Google Scholar 

  3. Gotoff SP, Amirmokri E, Liebner EJ (1967) Ataxia telangiectasia. Neoplasia, untoward response to X-irradiation, and tuberous sclerosis. Am J Dis Child 114:617–625

    CAS  PubMed  Google Scholar 

  4. Morgan JL, Holcomb TM, Morrissey RW (1968) Radiation reaction in ataxia telangiectasia. Am J Dis Child 116:557–558

    CAS  PubMed  Google Scholar 

  5. Lavin MF, Shiloh Y (1997) The genetic defect in ataxia telangiectasia. Annu Rev Immunol 15:177–202

    Article  CAS  PubMed  Google Scholar 

  6. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3(3):155–168

    Article  CAS  PubMed  Google Scholar 

  7. Lavin MF, Gueven N, Bottle S, Gatti RA (2007) Current and potential therapeutic strategies for the treatment of ataxia telangiectasia. Brit Med Bull 81:129–127

    Article  PubMed  Google Scholar 

  8. Gatti RA, Boder E, Vinters HV, Sparkes RS, Norman A, Lange K (1991) Ataxia telangiectasia: an interdisciplinary approach to pathogenesis. Medicine 70:99–117

    Article  CAS  PubMed  Google Scholar 

  9. Woods CG, Taylor AMR (1992) Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals. Q J Med 82:169–179

    CAS  PubMed  Google Scholar 

  10. Lefton-Greif MA, Crawford TO, Winkelstein JA, Loughlin GM, Koerner CB, Zahurak M et al (2000) Oropharyngeal dysphagia and aspiration in patients with ataxia telangiectasia. J Pediatr 2:225–231

    Google Scholar 

  11. Scarpini C, Mondelli M, Guazzi GC, Federico A (1996) Ataxia telangiectasia: somatosensory, brainstem auditory and motor evoked potentials in six patients. Dev Med Child Neurol 18(1):59–56

    Google Scholar 

  12. Habek M, Brinar VV, Rados M, Zadro I, Zarkovic K (2008) Brain abnormalities in ataxia telangiectasia. Neurologist 14(3):192–195

    Article  PubMed  Google Scholar 

  13. Gatti RA, Vinters HV (1985) Cerebellar pathology in ataxia telangiectasia: the significance of basket cells. Korc Found Ser 19:225–232

    CAS  Google Scholar 

  14. Crawford TO, Mandir AS, Lefton-Greif MA, Goodman SN, Goodman BK, Sengul H et al (2000) Quantitative neurologic assessment of ataxia telangiectasia. Neurology 54(7):1505–1509

    CAS  PubMed  Google Scholar 

  15. Schubert R, Reichenbach J, Zielen S (2005) Growth factor deficiency in patients with ataxia telangiectasia. Clin Exp Immunol 140(3):517–519

    Article  CAS  PubMed  Google Scholar 

  16. Isgaard J, Aberg D, Nilsson M (2007) Protective and regenerative effects of the GH/IGF-1 axis on the brain. Minerva Endocrinol 32(2):103–113

    CAS  PubMed  Google Scholar 

  17. Notarangelo L, Casanova JL, Fischer A, Puck J, Rosen F, Seger R et al (2004) Primary immunodeficiency diseases: an update. J Allergy Clin Immunol 114(3):677–687

    Article  CAS  PubMed  Google Scholar 

  18. Klockgether T, Schroth G, Diener HC, Dichgans J (1990) Idiopathic cerebellar ataxia of late onset: natural history and MRI morphology. J Neurol Neurosurg Psychiatry 53(4):297–305

    Article  CAS  PubMed  Google Scholar 

  19. Kromeyer-Hauschild K, Wabitsch M, Kunze D (2001) Perzentile für den body mass index für das Kindes—und Jugensalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 149:807–818

    Article  Google Scholar 

  20. Wong V, Yu YL, Chan-Lui WY, Woo E, Yeung CY (1987) Ataxia telangiectasia in Chinese children. A clinical and electrophysiological study. Clin Neurol Neurosurg 98(3):137–144

    Article  Google Scholar 

  21. Taylor MJ, Chan-Lui WY, Logan WJ (1985) Longitudinal evoked potentials in hereditary ataxias. Can J Neurol Sci 12(2):100–105

    CAS  PubMed  Google Scholar 

  22. Rossini PM, Cracco JB (1987) Somatosensory and brainstem auditory evoked potentials in neurodegenerative system disorders. Eur Neurol 26(3):176–188

    Article  CAS  PubMed  Google Scholar 

  23. Churchyard A, Stell R, Mastaglia FL (1991) Ataxia telangiectasia presenting as an extrapyramidal movement disorder and ocular motor apraxia without overt telangiectasia. Clin Exp Neurol 28:90–96

    CAS  PubMed  Google Scholar 

  24. Koepp M, Schelosky L, Cordes I, Cordes M, Poewe W (1994) Dystonia in ataxia telangiectasia: report of a case with putaminal lesions and decreased striatal [123I] iodobenzamide binding. Mov Disord 9(4):455–459

    Article  CAS  PubMed  Google Scholar 

  25. Eilam R, Peter Y, Elson A, Rotman G, Shiloh Y, Groner Y et al (1998) Selective loss of dopaminergic nigro-striatal neurons in brains of Atm-deficient mice. Proc Natl Acad Sci U S A 95(21):12653–12656

    Article  CAS  PubMed  Google Scholar 

  26. Eilam R, Peter Y, Groner Y, Segal M (2003) Late degeneration of nigro-striatal neurons in ATM−/− mice. Neuroscience 121(1):83–98

    Article  CAS  PubMed  Google Scholar 

  27. Demaerel PH, Kedall BE, Kingsley D (1992) Cranial CT and MRI in diseases with DNA repair defects. Neuroradiology 34:117–121

    Article  CAS  PubMed  Google Scholar 

  28. Wallis LI, Griffith PD, Ritchie SJ, Romanowski CAJ, Darwent G, Wilkinson ID (2007) Proton spectroscopy and imaging at 3T in ataxia telangiectasia. Am J Neuroradiol 28:79–83

    CAS  PubMed  Google Scholar 

  29. Farina L, Uggetti C, Ottolini A (1994) Ataxia telangiectasia: MR and CT findings. J Comput Assist Tomogr 18:724–727

    Article  CAS  PubMed  Google Scholar 

  30. Chung EO, Bodensteiner JB, Noorani PA, Schochet SS (1994) Cerebral white matter changes suggesting leukodystrophy in ataxia telangiectasia. J Child Neurol 9(1):31–35

    Article  CAS  PubMed  Google Scholar 

  31. Agamanolis DP, Greenstein JL (1979) Ataxia telangiectasia. Report of a case with Lewy bodies and vascular abnormalities within cerebral tissue. J Neuropathol Exp Neurol 38:475–489

    Article  CAS  PubMed  Google Scholar 

  32. Amromin GD, Boder E, Teplitz R (1979) Ataxia telangiectasia with a 32-year survival. A clinicopathological report. J Neuropathol Exp Neurol 38:621–643

    Article  CAS  PubMed  Google Scholar 

  33. Terplan KL, Kraus RF (1969) Histopathologic brain changes in association with ataxia telangiectasia. Neurology 19:446–454

    CAS  PubMed  Google Scholar 

  34. De Leon GA, Grover WD, Huff DS (1976) Neuropathologic changes in ataxia telangiectasia. Neurology 26:947–951

    PubMed  Google Scholar 

  35. Tavani F, Zimmermann RA, Berry GT (2003) Ataxia telangiectasia:the pattern of cerebellar atrophy on MRI. Neuroradiology 45:315–319

    CAS  PubMed  Google Scholar 

  36. Strich SJ (1966) Pathological findings in three cases of ataxia telangiectasia. J Neurol Neurosurg Psychiatry 29:489–499

    Article  Google Scholar 

  37. Tolbert DL, Clark BR (2003) GDNF and IGF-1 trophic factors delay hereditary purkinje cell degeneration and the process of gait ataxia. Exp Neurol 183(1):205–219

    Article  CAS  PubMed  Google Scholar 

  38. Chiesa N, Barlow C, Wynshaw-Boris A, Strata P, Tempia F (2000) Atm-deficient mice Purkinje cells show age-dependent defects in calcium spike bursts and calcium currents. Neuroscience 96(3):575–583

    Article  CAS  PubMed  Google Scholar 

  39. Kamsler A, Daily D, Hochman A, Stern N, Shiloh Y, Rotman G et al (2001) Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res 61(5):1849–1854

    CAS  PubMed  Google Scholar 

  40. Reichenbach J, Schubert R, Schindler D, Muller K, Bohles H, Zielen S (2002) Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal 4(3):465–469

    Article  CAS  PubMed  Google Scholar 

  41. Rotman G, Shiloh Y (1997) Ataxia telangiectasia: is ATM a sensor of oxidative damage and stress? Bioessays 19(10):911–917

    Article  CAS  PubMed  Google Scholar 

  42. Schubert R, Schmitz N, Pietzner J, Tandi C, Theisen A, Dresel R et al (2009) Growth hormone supplementation increased latency to tumourigenesis in Atm-deficient mice. Growth factors 27(5):265–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are indebted to Mr. Helmut Stimm, head of the Ataxia Telangiectasia Selbsthilfe, for financial support to cover the traveling costs of patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zielen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kieslich, M., Hoche, F., Reichenbach, J. et al. Extracerebellar MRI—Lesions in Ataxia Telangiectasia Go Along with Deficiency of the GH/IGF-1 Axis, Markedly Reduced Body Weight, High Ataxia Scores and Advanced Age. Cerebellum 9, 190–197 (2010). https://doi.org/10.1007/s12311-009-0138-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0138-0

Keywords

Navigation