Skip to main content

Advertisement

Log in

Malformations of the Midbrain and Hindbrain: A Retrospective Study and Review of the Literature

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

We report the results of a retrospective analysis of radiological and clinical findings in 45 cases of midbrain–hindbrain anomalies and review recent advances in embryology and molecular neurogenetics. Among 45 patients with midbrain–hindbrain malformations, 16 cases of molar tooth malformation, 12 of cerebellar hypoplasia, ten of posterior fossa cyst and cerebellar vermian hypoplasia, three of rhombencephalosynapsis, two of Fukuyama congenital muscular dystrophy and two cases of isolated cerebellar dysplasia were identified. Twenty-six patients presented with motor-mental retardation, which was the most common clinical finding. Eleven patients were born to consanguineous parents. The correct diagnosis of cerebellar malformation is important for determining prognosis, the risk of recurrence and the need for genetic counselling. Integrated classification of malformations based on morphology, embryology and molecular neurogenetics may be useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Demaerel P (2002) Abnormalities of cerebellar foliation and fissuration: classification, neurogenetics and clinicoradiological correlations. Neuroradiology 44:639–646

    Article  PubMed  CAS  Google Scholar 

  2. Soto-Ares G, Joyes B, Lemaitre MP, Vallee L, Pruvo JP (2003) MRI in children with mental retardation. Pediatr Radiol 33:334–345

    PubMed  Google Scholar 

  3. Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. Am J Neuroradiol 23:1074–1087

    PubMed  Google Scholar 

  4. Sarnat HB, Flores-Sarnat L (2003) Etiological classification of CNS malformations: integration of molecular genetics and morphological criteria. Epileptic Disord 5(Suppl 2):S35–S43

    PubMed  Google Scholar 

  5. Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80:36–53

    Article  PubMed  CAS  Google Scholar 

  6. Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491

    Article  PubMed  CAS  Google Scholar 

  7. Millen KJ, Millonig JH, Wingate RJ, Alder J, Hatten ME (1999) Neurogenetics of the cerebellar system. J Child Neurol 14:574–581

    Article  PubMed  CAS  Google Scholar 

  8. Hallonet ME, Teillet MA, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31

    PubMed  CAS  Google Scholar 

  9. Hallonet ME, Le Douarin NM (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci 5:1145–1155

    Article  PubMed  CAS  Google Scholar 

  10. Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet 12:15–20

    Article  PubMed  CAS  Google Scholar 

  11. Jaspan T (2008) New concepts on posterior fossa malformations. Pediatr Radiol 38:409–414

    Article  Google Scholar 

  12. Barkovich AJ, Millen KJ, Dobyns WBA (2007) Developmental classification of malformations of the brainstem. Ann Neurol 62:625–639

    Article  PubMed  Google Scholar 

  13. Demaerel P, Morel C, Lagae L, Wilms G (2004) Partial rhombencephalosynapsis. AJNR Am J Neuroradiol 25:29–31

    PubMed  Google Scholar 

  14. Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382

    Article  PubMed  CAS  Google Scholar 

  15. Utsunomiya H, Takano K, Ogasawara T, Hashimoto T, Fukushima T, Okazaki M (1998) Rhombencephalosynapsis: cerebellar embryogenesis. AJNR Am J Neuroradiol 19:547–549

    PubMed  CAS  Google Scholar 

  16. Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Thomas, Springfield, III, pp 3–145

    Google Scholar 

  17. Sarnat HB (2000) Molecular genetics classification of central nervous system malformations. J Child Neurol 15:675–687

    Article  PubMed  CAS  Google Scholar 

  18. Nagai T, Aruga J, Takada S, Gunther T, Sporle R, Schughart K, Mikoshiba K (1997) The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 182:299–313

    Article  PubMed  CAS  Google Scholar 

  19. Muntoni F, Brockington M, Blake DJ, Torelli S, Brown SC (2002) Defective glycosylation in muscular dystrophy. Lancet 360:1419–1421

    Article  PubMed  Google Scholar 

  20. Toda T, Segawa M, Nomura Y et al (1993) Localization of a gene for Fukuyama type congenital muscular dystrophy to chromosome 9q31–33. Nat Genet 5:283–286

    Article  PubMed  CAS  Google Scholar 

  21. Kobayashi K, Nakahori Y, Miyake M et al (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392

    Article  PubMed  CAS  Google Scholar 

  22. Beltran-Valero de Bernabe D, Currier S, Steinbrecher A et al (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker–Warburg syndrome. Am J Hum Genet 71:1033–1043

    Article  PubMed  Google Scholar 

  23. Cormand B, Avela K, Pihko H et al (1999) Assignment of the muscle–eye–brain disease gene to 1p32–p34 by linkage analysis and homozygosity mapping. Am J Hum Genet 64:126–135

    Article  PubMed  CAS  Google Scholar 

  24. Joubert M, Eisenring JJ, Robb JP, Andermann F (1969) Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 19:813–825

    PubMed  CAS  Google Scholar 

  25. Gleeson JG, Keeler LC, Parisi MA et al (2004) Molar tooth sign of the midbrain–hindbrain junction: occurrence in multiple distinct syndromes. Am J Med Genet 125:125–134

    Article  Google Scholar 

  26. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA (1999) New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J Med Genet 36:437–446

    PubMed  CAS  Google Scholar 

  27. Chen CP (2007) Meckel syndrome: genetics, perinatal findings, and differential diagnosis. Taiwan J Obstet Gynecol 46:9–14

    Article  PubMed  Google Scholar 

  28. Quisling RG, Barkovich AJ, Maria BL (1999) Magnetic resonance imaging features and classification of central nervous system malformations in Joubert syndrome. J Child Neurol 14:628–635

    Article  PubMed  CAS  Google Scholar 

  29. Valente EM, Brancati F, Dallapiccola B (2008) Genotypes and phenotypes of Joubert syndrome and related disorders. Eur J Med Genet 51:1–23

    Article  PubMed  Google Scholar 

  30. Ansley SJ, Badano JL, Blacque OE et al (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature 425:628–633

    Article  PubMed  CAS  Google Scholar 

  31. Ferrante MI, Zullo A, Barra A et al (2006) Oral–facial–digital type I protein is required for primary cilia formation and left–right axis specification. Nat Genet 38:112–117

    Article  PubMed  CAS  Google Scholar 

  32. Parisi MA, Bennett CL, Eckert ML et al (2004) The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am J Hum Genet 75:82–91

    Article  PubMed  CAS  Google Scholar 

  33. Valente EM, Marsh SE, Castori M (2005) Distinguishing the four genetic causes of Jouberts syndrome-related disorders. Ann Neurol 57:513–519

    Article  PubMed  Google Scholar 

  34. Hart MN, Malamud N, Ellis WG (1972) The Dandy–Walker syndrome. A clinicopathological study based on 28 cases. Neurology 22:771–780

    PubMed  CAS  Google Scholar 

  35. Barkovich AJ, Kjos BO, Norman D, Edwards MS (1989) Revised classification of posterior fossa cysts and cystlike malformations based on the results of multiplanar MR imaging. AJR Am J Roentgenol 153:1289–1300

    PubMed  CAS  Google Scholar 

  36. Raybaud C, Girard N, Sevely A, Leboucq N (1996) Neuroradiologie pediatrique (I). In: Raybaud C, Girard N, Sevely A, Leboucq N (eds) Radiodiagnostic–neuroradiologie–appariel locomoteur. Elsevier, Paris, p 26

    Google Scholar 

  37. Barkovich AJ (2005) Congenital malformations of the brain and skull. In: Barkovich AJ (ed) Pediatric neuroimaging, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 291–440

    Google Scholar 

  38. Tortori-Donati P, Fondelli MP, Rossi A, Carini S (1996) Cystic malformations of the posterior cranial fossa originating from a defect of the posterior membranous area. Mega cisterna magna and persisting Blake’s pouch: two separate entities. Childs Nerv Syst 12:303–308

    Article  PubMed  CAS  Google Scholar 

  39. Rengachary SS, Watanabe I (1981) Ultrastructure and pathogenesis of intracranial arachnoid cysts. J Neuropathol Exp Neurol 40:61–83

    Article  PubMed  CAS  Google Scholar 

  40. Bonnevie K, Brodal A (1946) Hereditary hydrocephalus in the house mouse. VI. The development of cerebellar anomalies during fetal life with notes on the normal development of the mouse cerebellum. Lkr Norske Vidensk Akad Oslo 1 Matj-nat KI 4:4–60

    Google Scholar 

  41. Nelson MD Jr, Maher K, Gilles FH (2004) A different approach to cysts of the posterior fossa. Pediatr Radiol 34:720–732

    Article  PubMed  Google Scholar 

  42. Grinberg I, Northrup H, Ardinger H, Prasad C, Dobyns WB, Millen KJ (2004) Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy–Walker malformation. Nat Genet 36:1053–1055

    Article  PubMed  CAS  Google Scholar 

  43. Boddaert N, Klein O, Ferguson N et al (2003) Intellectual prognosis of the Dandy–Walker malformation in children: the importance of vermian lobulation. Neuroradiology 45:320–324

    PubMed  CAS  Google Scholar 

  44. Patel MS, Becker LE, Toi A, Armstrong DL, Chitayat D (2006) Severe, fetal-onset form of olivopontocerebellar hypoplasia in three sibs: PCH type 5? Am J Med Genet A 140:594–603

    PubMed  Google Scholar 

  45. Donkelaar HJ, Wesseling P, Lammens M, Renier WO, Mullaart RA, Thijssen HO (2001) Development and the developmental disorders of human brain. I. Early development of the cerebrum. Ned Tijdschr Geneeskd 145:345–353

    PubMed  Google Scholar 

  46. Ramaekers VT, Heimann G, Reul J, Thron A, Jaeken J (1997) Genetic disorders and cerebellar structural abnormalities in childhood. Brain 120:1739–1751

    Article  PubMed  Google Scholar 

  47. Chizhikov V, Millen KJ (2003) Development and malformations of the cerebellum in mice. Mol Genet Metab 80:54–65

    Article  PubMed  CAS  Google Scholar 

  48. Soto-Ares G, Delmaire C, Deries B, Vallee L, Pruvo JP (2000) Cerebellar cortical dysplasia: MR findings in a complex entity. AJNR Am J Neuroradiol 21:1511–1519

    PubMed  CAS  Google Scholar 

  49. Soto-Ares G, Devisme L, Jorriot S, Deries B, Pruvo JP, Ruchoux MM (2002) Neuropathologic and MR imaging correlation in a neonatal case of cerebellar cortical dysplasia. AJNR Am J Neuroradiol 23:1101–1104

    PubMed  Google Scholar 

  50. Sztriha L, Johansen JG (2005) Spectrum of malformations of the hindbrain (cerebellum, pons, and medulla) in a cohort of children with high rate of parental consanguinity. Am J Med Genet A 135:134–141

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Alkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkan, O., Kizilkilic, O. & Yildirim, T. Malformations of the Midbrain and Hindbrain: A Retrospective Study and Review of the Literature. Cerebellum 8, 355–365 (2009). https://doi.org/10.1007/s12311-009-0104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0104-x

Keywords

Navigation