Skip to main content

Advertisement

Log in

SHH Pathway and Cerebellar Development

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The morphogenetic factor Sonic hedgehog (SHH) has been discovered as one of the masterplayers in cerebellar patterning and was subjected to intensive investigation during the last decade. During early postnatal development, this continuously secreted cholesterol-modified protein drives the expansion of the largest neuronal population of the brain, the granular cells. Moreover, it acts on Bergmann glia differentiation and would potentially affect Purkinje cells homeostasis at adult age. The cerebellar cortex constituted an ideal developmental model to dissect out the upstream mechanisms and downstream targets of this complex pathway. Its deep understanding discloses some of the mechanistic disorders underlying pediatric tumorigenesis, congenital ataxia, and mental retardation. Therapeutical use of its regulators has been consolidated on murine transgenic models and is now considered as a realistic human clinical application. Here, we will review the most recent advances made in the comprehensive understanding of SHH involvement in cerebellar development and pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114

    Article  PubMed  CAS  Google Scholar 

  2. Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472

    Article  PubMed  CAS  Google Scholar 

  3. DeCamp DL, Thompson TM, de Sauvage FJ, Lerner MR (2000) Smoothened activates Galphai-mediated signaling in frog melanophores. J Biol Chem 275:26322–26327

    Article  PubMed  CAS  Google Scholar 

  4. Huangfu D, Anderson KV (2006) Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133:3–14

    Article  PubMed  CAS  Google Scholar 

  5. Fuccillo M, Joyner AL, Fishell G (2006) Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci 7:772–783

    Article  PubMed  CAS  Google Scholar 

  6. Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    Article  PubMed  CAS  Google Scholar 

  7. Hatten ME, Alder J, Zimmerman K, Heintz N (1997) Genes involved in cerebellar cell specification and differentiation. Curr Opin Neurobiol 7:40–47

    Article  PubMed  CAS  Google Scholar 

  8. Repetto M, Maziere JC, Citadelle D, Dupuis R, Meier M, Biade S et al (1990) Teratogenic effect of the cholesterol synthesis inhibitor AY 9944 on rat embryos in vitro. Teratology 42:611–618

    Article  PubMed  CAS  Google Scholar 

  9. Lanoue L, Dehart DB, Hinsdale ME, Maeda N, Tint GS, Sulik KK (1997) Limb, genital, CNS, and facial malformations result from gene/environment-induced cholesterol deficiency: further evidence for a link to sonic hedgehog. Am J Med Genet 73:24–31

    Article  PubMed  CAS  Google Scholar 

  10. Dehart DB, Lanoue L, Tint GS, Sulik KK (1997) Pathogenesis of malformations in a rodent model for Smith–Lemli–Opitz syndrome. Am J Med Genet 68:328–337

    Article  PubMed  CAS  Google Scholar 

  11. Yu H, Patel SB (2005) Recent insights into the Smith–Lemli–Opitz syndrome. Clin Genet 68:383–391

    Article  PubMed  CAS  Google Scholar 

  12. Porter FD (2003) Human malformation syndromes due to inborn errors of cholesterol synthesis. Curr Opin Pediatr 15:607–613

    Article  PubMed  Google Scholar 

  13. Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    PubMed  Google Scholar 

  14. Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448

    Article  PubMed  CAS  Google Scholar 

  15. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114

    Article  PubMed  CAS  Google Scholar 

  16. Kenney AM, Rowitch DH (2000) Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20:9055–9067

    Article  PubMed  CAS  Google Scholar 

  17. Corrales JD, Blaess S, Mahoney EM, Joyner AL (2006) The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 133:1811–1821

    Article  PubMed  CAS  Google Scholar 

  18. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL (2004) Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development 131:5581–5590

    Article  PubMed  CAS  Google Scholar 

  19. Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M (1999) Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci 11:3199–31214

    Article  PubMed  CAS  Google Scholar 

  20. Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP (2004) Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol 270:393–410

    Article  PubMed  CAS  Google Scholar 

  21. Diaz E, Ge Y, Yang YH, Loh KC, Serafini TA, Okazaki Y et al (2002) Molecular analysis of gene expression in the developing pontocerebellar projection system. Neuron 36:417–434

    Article  PubMed  CAS  Google Scholar 

  22. Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM et al (2003) Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A 100:7331–7336

    Article  PubMed  CAS  Google Scholar 

  23. Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM (2005) The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 9:327–338

    Article  PubMed  CAS  Google Scholar 

  24. Zhao Q, Kho A, Kenney AM, Yuk Di DI, Kohane I, Rowitch DH (2002) Identification of genes expressed with temporal-spatial restriction to developing cerebellar neuron precursors by a functional genomic approach. Proc Natl Acad Sci U S A 99:5704–5709

    Article  PubMed  CAS  Google Scholar 

  25. Pogoriler J, Millen K, Utset M, Du W (2006) Loss of cyclin D1 impairs cerebellar development and suppresses medulloblastoma formation. Development 133:3929–3937

    Article  PubMed  CAS  Google Scholar 

  26. Huard JM, Forster CC, Carter ML, Sicinski P, Ross ME (1999) Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 126:1927–1935

    PubMed  CAS  Google Scholar 

  27. Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH et al (2002) Development of mice expressing a single D-type cyclin. Genes Dev 16:3277–3289

    Article  PubMed  CAS  Google Scholar 

  28. Schuller U, Zhao Q, Godinho SA, Heine VM, Medema RH, Pellman D et al (2007) Forkhead transcription factor FoxM1 regulates mitotic entry and prevents spindle defects in cerebellar granule neuron precursors. Mol Cell Biol 27:8259–8270

    Article  PubMed  CAS  Google Scholar 

  29. Knoepfler PS, Cheng PF, Eisenman RN (2002) N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16:2699–2712

    Article  PubMed  CAS  Google Scholar 

  30. Kenney AM, Cole MD, Rowitch DH (2003) Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130:15–28

    Article  PubMed  CAS  Google Scholar 

  31. Yun JS, Rust JM, Ishimaru T, Diaz E (2007) A novel role of the Mad family member Mad3 in cerebellar granule neuron precursor proliferation. Mol Cell Biol 27:8178–8189

    Article  PubMed  CAS  Google Scholar 

  32. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P et al (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428:337–341

    Article  PubMed  CAS  Google Scholar 

  33. Traiffort E, Charytoniuk DA, Faure H, Ruat M (1998) Regional distribution of Sonic Hedgehog, patched, and smoothened mRNA in the adult rat brain. J Neurochem 70:1327–1330

    Article  PubMed  CAS  Google Scholar 

  34. Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez-Hernandez X, Segal RA et al (2001) SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128:1971–1981

    PubMed  CAS  Google Scholar 

  35. Hartmann W, Koch A, Brune H, Waha A, Schuller U, Dani I et al (2005) Insulin-like growth factor II is involved in the proliferation control of medulloblastoma and its cerebellar precursor cells. Am J Pathol 166:1153–1162

    PubMed  CAS  Google Scholar 

  36. Parathath SR, Mainwaring LA, Fernandez LA, Campbell DO, Kenney AM (2008) Insulin receptor substrate 1 is an effector of sonic hedgehog mitogenic signaling in cerebellar neural precursors. Development 135(19):3291–3300

    Article  PubMed  CAS  Google Scholar 

  37. Shah OJ, Hunter T (2006) Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol 26:6425–6434

    Article  PubMed  CAS  Google Scholar 

  38. Vaillant C, Didier-Bazes M, Hutter A, Belin MF, Thomasset N (1999) Spatiotemporal expression patterns of metalloproteinases and their inhibitors in the postnatal developing rat cerebellum. J Neurosci 19:4994–5004

    PubMed  CAS  Google Scholar 

  39. Vaillant C, Meissirel C, Mutin M, Belin MF, Lund LR, Thomasset N (2003) MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum. Mol Cell Neurosci 24:395–408

    Article  PubMed  CAS  Google Scholar 

  40. Blaess S, Graus-Porta D, Belvindrah R, Radakovits R, Pons S, Littlewood-Evans A et al (2004) Beta1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci 24:3402–3412

    Article  PubMed  CAS  Google Scholar 

  41. Mills J, Niewmierzycka A, Oloumi A, Rico B, St-Arnaud R, Mackenzie IR et al (2006) Critical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development. J Neurosci 26:830–840

    Article  PubMed  CAS  Google Scholar 

  42. Rubin JB, Choi Y, Segal RA (2002) Cerebellar proteoglycans regulate sonic hedgehog responses during development. Development 129:2223–2232

    PubMed  CAS  Google Scholar 

  43. Pons S, Trejo JL, Martinez-Morales JR, Marti E (2001) Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 128:1481–1492

    PubMed  CAS  Google Scholar 

  44. Vaillant C, Michos O, Orolicki S, Brellier F, Taieb S, Moreno E et al (2007) Protease nexin 1 and its receptor LRP modulate SHH signalling during cerebellar development. Development 134:1745–1754

    Article  PubMed  CAS  Google Scholar 

  45. McCarthy RA, Argraves WS (2003) Megalin and the neurodevelopmental biology of sonic hedgehog and retinol. J Cell Sci 116:955–960

    Article  PubMed  CAS  Google Scholar 

  46. Willnow TE, Hilpert J, Armstrong SA, Rohlmann A, Hammer RE, Burns DK et al (1996) Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci U S A 93:8460–8464

    Article  PubMed  CAS  Google Scholar 

  47. Li X, Herz J, Monard D (2006) Activation of ERK signaling upon alternative protease nexin-1 internalization mediated by syndecan-1. J Cell Biochem 99:936–951

    Article  PubMed  CAS  Google Scholar 

  48. Nicot A, Lelievre V, Tam J, Waschek JA, DiCicco-Bloom E (2002) Pituitary adenylate cyclase-activating polypeptide and sonic hedgehog interact to control cerebellar granule precursor cell proliferation. J Neurosci 22:9244–9254

    PubMed  CAS  Google Scholar 

  49. Fogarty MP, Emmenegger BA, Grasfeder LL, Oliver TG, Wechsler-Reya RJ (2007) Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci U S A 104:2973–2978

    Article  PubMed  CAS  Google Scholar 

  50. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB et al (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8:723–729

    Article  PubMed  CAS  Google Scholar 

  51. Rios I, Alvarez-Rodriguez R, Marti E, Pons S (2004) Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development 131:3159–3168

    Article  PubMed  CAS  Google Scholar 

  52. Alvarez-Rodriguez R, Barzi M, Berenguer J, Pons S (2007) Bone morphogenetic protein 2 opposes Shh-mediated proliferation in cerebellar granule cells through a TIEG-1-based regulation of Nmyc. J Biol Chem 282:37170–37180

    Article  PubMed  CAS  Google Scholar 

  53. Gallo R, Zazzeroni F, Alesse E, Mincione C, Borello U, Buanne P et al (2002) REN: a novel, developmentally regulated gene that promotes neural cell differentiation. J Cell Biol 158:731–740

    Article  PubMed  CAS  Google Scholar 

  54. Argenti B, Gallo R, Di Marcotullio L, Ferretti E, Napolitano M, Canterini S et al (2005) Hedgehog antagonist REN(KCTD11) regulates proliferation and apoptosis of developing granule cell progenitors. J Neurosci 25:8338–8346

    Article  PubMed  CAS  Google Scholar 

  55. Klein AL, Zilian O, Suter U, Taylor V (2004) Murine numb regulates granule cell maturation in the cerebellum. Dev Biol 266:161–177

    Article  PubMed  CAS  Google Scholar 

  56. Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA et al (2006) Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 8:1415–1423

    Article  PubMed  CAS  Google Scholar 

  57. Wetmore C (2003) Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. Curr Opin Genet Dev 13:34–42

    Article  PubMed  CAS  Google Scholar 

  58. Fogarty MP, Kessler JD, Wechsler-Reya RJ (2005) Morphing into cancer: the role of developmental signaling pathways in brain tumor formation. J Neurobiol 64:458–475

    Article  PubMed  CAS  Google Scholar 

  59. Eberhart CG (2007) In search of the medulloblast: neural stem cells and embryonal brain tumors. Neurosurg Clin N Am 18:59–69 viii–ix

    Article  PubMed  Google Scholar 

  60. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  61. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG et al (2008) Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14:123–134

    Article  PubMed  CAS  Google Scholar 

  62. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M et al (2008) Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14:135–145

    Article  PubMed  CAS  Google Scholar 

  63. Gorlin RJ (1995) Nevoid basal cell carcinoma syndrome. Dermatol Clin 13:113–125

    PubMed  CAS  Google Scholar 

  64. Pietsch T, Koch A, Wiestler OD (1997) Molecular genetic studies in medulloblastomas: evidence for tumor suppressor genes at the chromosomal regions 1q31-32 and 17p13. Klin Padiatr 209:150–155

    Article  PubMed  CAS  Google Scholar 

  65. Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X et al (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310

    Article  PubMed  CAS  Google Scholar 

  66. Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P et al (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803

    PubMed  CAS  Google Scholar 

  67. Weiner HL, Bakst R, Hurlbert MS, Ruggiero J, Ahn E, Lee WS et al (2002) Induction of medulloblastomas in mice by sonic hedgehog, independent of Gli1. Cancer Res 62:6385–6389

    PubMed  CAS  Google Scholar 

  68. Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW (2003) c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5:198–204

    PubMed  CAS  Google Scholar 

  69. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113

    Article  PubMed  CAS  Google Scholar 

  70. Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA et al (2004) The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64:7794–7800

    Article  PubMed  CAS  Google Scholar 

  71. Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D et al (2006) A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 66:10171–10178

    Article  PubMed  CAS  Google Scholar 

  72. Kimura H, Stephen D, Joyner A, Curran T (2005) Gli1 is important for medulloblastoma formation in Ptc1+/− mice. Oncogene 24:4026–4036

    PubMed  CAS  Google Scholar 

  73. Wetmore C, Eberhart DE, Curran T (2001) Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 61:513–516

    PubMed  CAS  Google Scholar 

  74. Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T et al (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26:6442–6447

    Article  PubMed  CAS  Google Scholar 

  75. Lee Y, Miller HL, Jensen P, Hernan R, Connelly M, Wetmore C et al (2003) A molecular fingerprint for medulloblastoma. Cancer Res 63:5428–5437

    PubMed  CAS  Google Scholar 

  76. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442

    Article  PubMed  CAS  Google Scholar 

  77. Hahn H, Wojnowski L, Specht K, Kappler R, Calzada-Wack J, Potter D et al (2000) Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 275:28341–28344

    Article  PubMed  CAS  Google Scholar 

  78. Rao G, Pedone CA, Del Valle L, Reiss K, Holland EC, Fults DW (2004) Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23:6156–6162

    Article  PubMed  CAS  Google Scholar 

  79. Kenney AM, Widlund HR, Rowitch DH (2004) Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131:217–228

    Article  PubMed  CAS  Google Scholar 

  80. Browd SR, Kenney AM, Gottfried ON, Yoon JW, Walterhouse D, Pedone CA et al (2006) N-myc can substitute for insulin-like growth factor signaling in a mouse model of sonic hedgehog-induced medulloblastoma. Cancer Res 66:2666–2672

    Article  PubMed  CAS  Google Scholar 

  81. Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M et al (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27:2616–2627

    Article  PubMed  CAS  Google Scholar 

  82. Di Marcotullio L, Ferretti E, De Smaele E, Argenti B, Mincione C, Zazzeroni F et al (2004) REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc Natl Acad Sci U S A 101:10833–10838

    Article  PubMed  Google Scholar 

  83. Ferretti E, De Smaele E, Di Marcotullio L, Screpanti I, Gulino A (2005) Hedgehog checkpoints in medulloblastoma: the chromosome 17p deletion paradigm. Trends Mol Med 11:537–545

    Article  PubMed  CAS  Google Scholar 

  84. Briggs KJ, Corcoran-Schwartz IM, Zhang W, Harcke T, Devereux WL, Baylin SB et al (2008) Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev 22:770–785

    Article  PubMed  CAS  Google Scholar 

  85. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN et al (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561

    Article  PubMed  CAS  Google Scholar 

  86. Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H et al (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6:229–240

    Article  PubMed  CAS  Google Scholar 

  87. Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K et al (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A 100:13513–13518

    Article  PubMed  CAS  Google Scholar 

  88. Corcoran RB, Bachar Raveh T, Barakat MT, Lee EY, Scott MP (2008) Insulin-like growth factor 2 is required for progression to advanced medulloblastoma in patched1 heterozygous mice. Cancer Res 68:8788–8795

    Article  PubMed  CAS  Google Scholar 

  89. Corcoran RB, Scott MP (2006) Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci U S A 103:8408–8413

    Article  PubMed  CAS  Google Scholar 

  90. Grimmer MR, Weiss WA (2008) BMPs oppose Math1 in cerebellar development and in medulloblastoma. Genes Dev 22:693–699

    Article  PubMed  CAS  Google Scholar 

  91. Duplan SM, Theoret Y, Kenigsberg RL (2002) Antitumor activity of fibroblast growth factors (FGFs) for medulloblastoma may correlate with FGF receptor expression and tumor variant. Clin Cancer Res 8:246–257

    PubMed  CAS  Google Scholar 

  92. Vachon P, Girard C, Theoret Y (2004) Effects of basic fibroblastic growth factor on the growth of human medulloblastoma xenografts. J Neurooncol 67:139–146

    Article  PubMed  Google Scholar 

  93. Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317:372–376

    Article  PubMed  CAS  Google Scholar 

  94. Chizhikov VV, Davenport J, Zhang Q, Shih EK, Cabello OA, Fuchs JL et al (2007) Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci 27:9780–9789

    Article  PubMed  CAS  Google Scholar 

  95. Spassky N, Han YG, Aguilar A, Strehl L, Besse L, Laclef C et al (2008) Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 317:246–259

    Article  PubMed  CAS  Google Scholar 

  96. Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18:12–19

    Article  PubMed  CAS  Google Scholar 

  97. Louie CM, Gleeson JG (2005) Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum Mol Genet 14(Spec No. 2):R235–R242

    Article  PubMed  CAS  Google Scholar 

  98. Aruga J (2004) The role of Zic genes in neural development. Mol Cell Neurosci 26:205–221

    Article  PubMed  CAS  Google Scholar 

  99. Latash ML, Corcos DM (1991) Kinematic and electromyographic characteristics of single-joint movements of individuals with Down syndrome. Am J Ment Retard 96:189–201

    PubMed  CAS  Google Scholar 

  100. Moldrich RX, Dauphinot L, Laffaire J, Rossier J, Potier MC (2007) Down syndrome gene dosage imbalance on cerebellum development. Prog Neurobiol 82:87–94

    Article  PubMed  CAS  Google Scholar 

  101. Roper RJ, Baxter LL, Saran NG, Klinedinst DK, Beachy PA, Reeves RH (2006) Defective cerebellar response to mitogenic Hedgehog signaling in Down [corrected] syndrome mice. Proc Natl Acad Sci U S A 103:1452–1456

    Article  PubMed  CAS  Google Scholar 

  102. Dakubo GD, Beug ST, Mazerolle CJ, Thurig S, Wang Y, Wallace VA (2008) Control of glial precursor cell development in the mouse optic nerve by sonic hedgehog from retinal ganglion cells. Brain Res 1228:27–42

    Article  PubMed  CAS  Google Scholar 

  103. Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23

    Article  PubMed  CAS  Google Scholar 

  104. So PL, Yip PK, Bunting S, Wong LF, Mazarakis ND, Hall S et al (2006) Interactions between retinoic acid, nerve growth factor and sonic hedgehog signalling pathways in neurite outgrowth. Dev Biol 298:167–175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Catherine Vaillant is supported by a research fellowship from the Swiss National foundation and Denis Monard by the Novartis Research Foundation. We would like to thank Dr Filippo Rijli for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Monard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaillant, C., Monard, D. SHH Pathway and Cerebellar Development. Cerebellum 8, 291–301 (2009). https://doi.org/10.1007/s12311-009-0094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0094-8

Keywords

Navigation