Skip to main content

Advertisement

Log in

Potential Role of TRAIL in Metastasis of Mutant KRAS Expressing Lung Adenocarcinoma

  • Short Communication
  • Published:
Cancer Microenvironment

Abstract

Apo2L/tumor necrosis factor (TNF)-α-related apoptosis-inducing ligand (TRAIL, TNFSF10) is an important cytokine in the tumor microenvironment and plays a major role in the balance of cell survival/death pathways. Bioinformatic analyses of 839 adenocarcinoma (AC) and 356 squamous cell lung carcinoma patient data (SCC) by cBioPortal (genomic analyses) shows that TRAIL expression leads to differential outcomes of disease free survival in AC and SCC. Oncomine datamining (transcript analyses) reveal that TRAIL is upregulated in 167 SCC as compared to 350 AC patients from six data sets. Genomic analyses using cBioPortal revealed high rates of KRAS mutation in AC accompanied by higher incidence of metastasis and increased amplifications of TRAIL gene in SCC. Bioinformatic analyses of an additional lung cancer patient database also showed that risk of disease progression was significantly increased with high TRAIL expression in AC (461 samples). In vitro studies demonstrated that TRAIL increased phosphorylation of ERK only in adenocarcinoma cell lines with mutant KRAS. This was associated with increased migration that was abrogated by MEK inhibitor PD98059. Effects of increased migration induced by TRAIL persisted even after exposure to ionizing radiation with suppression of DNA damage response. These results help understand the role of TRAIL signaling in metastasis which is essential to develop strategies to revert these signals into pro-apoptotic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Raponi M, Zhang Y, Yu J, et al. (2006) Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res 66:7466–7472. doi:10.1158/0008-5472.CAN-06-11912

    Article  CAS  PubMed  Google Scholar 

  2. Jin M, Kawakami K, Fukui Y, et al. (2009) Different histological types of non-small cell lung cancer have distinct folate and DNA methylation levels. Cancer Sci 100:2325–2330. doi:10.1111/j.1349-7006.2009.01321.x

    Article  CAS  PubMed  Google Scholar 

  3. Skrzypski M, Dziadziuszko R, Jassem E, et al. (2013) Main histologic types of non-small-cell lung cancer differ in expression of prognosis-related genes. Clin Lung Cancer 14:666–673.e2. doi:10.1016/j.cllc.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Stegehuis JH, de Wilt LH, de Vries EG, et al. (2010) TRAIL receptor targeting therapies for non-small cell lung cancer: current status and perspectives. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 13:2–15. doi:10.1016/j.drup.2009.11.001

    CAS  Google Scholar 

  5. Garofalo M, Romano G, Quintavalle C, et al. (2007) Selective inhibition of PED protein expression sensitizes B-cell chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis. Int J Cancer 120:1215–1222. doi:10.1002/ijc.22495

    Article  CAS  PubMed  Google Scholar 

  6. Garofalo M, Quintavalle C, Di Leva G, et al. (2008) MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 27:3845–3855. doi:10.1038/onc.2008.6

    Article  CAS  PubMed  Google Scholar 

  7. Jeon Y-J, Middleton J, Kim T, et al. (2015) A set of NF-κB-regulated microRNAs induces acquired TRAIL resistance in lung cancer. Proc Natl Acad Sci U S A 112:E3355–E3364. doi:10.1073/pnas.1504630112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu N, Zuo C, Wang X, et al. (2014) miR-942 decreases TRAIL-induced apoptosis through ISG12a downregulation and is regulated by AKT. Oncotarget 5:4959–4971

    Article  PubMed  PubMed Central  Google Scholar 

  9. Spierings DCJ, de Vries EGE, Timens W, et al. (2003) Expression of TRAIL and TRAIL death receptors in stage III non-small cell lung cancer tumors. Clin Cancer Res Off J Am Assoc Cancer Res 9:3397–3405

    CAS  Google Scholar 

  10. Cerami E, Gao J, Dogrusoz U, et al. (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. doi:10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  11. Rhodes DR, Yu J, Shanker K, et al. (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Győrffy B, Surowiak P, Budczies J, Lánczky A (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 8:e82241. doi:10.1371/journal.pone.0082241

    Article  PubMed  PubMed Central  Google Scholar 

  13. Carpenter AE, Jones TR, Lamprecht MR, et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100. doi:10.1186/gb-2006-7-10-r100

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hoogwater FJH, Nijkamp MW, Smakman N, et al. (2010) Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells. Gastroenterology 138:2357–2367. doi:10.1053/j.gastro.2010.02.046

    Article  CAS  PubMed  Google Scholar 

  15. Wei F, Yan J, Tang D (2011) Extracellular signal-regulated kinases modulate DNA damage response - a contributing factor to using MEK inhibitors in cancer therapy. Curr Med Chem 18:5476–5482. doi:10.2174/092986711798194388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lemke J, von Karstedt S, Zinngrebe J, Walczak H (2014) Getting TRAIL back on track for cancer therapy. Cell Death Differ 21:1350–1364. doi:10.1038/cdd.2014.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feoktistova M, Geserick P, Kellert B, et al. (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463. doi:10.1016/j.molcel.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Munshi A, Pappas G, Honda T, et al. (2001) TRAIL (APO-2 L) induces apoptosis in human prostate cancer cells that is inhibitable by Bcl-2. Oncogene 20:3757–3765. doi:10.1038/sj.onc.1204504

    Article  CAS  PubMed  Google Scholar 

  19. Park S-Y, Billiar TR, Seol D-W (2002) IFN-gamma inhibition of TRAIL-induced IAP-2 upregulation, a possible mechanism of IFN-gamma-enhanced TRAIL-induced apoptosis. Biochem Biophys Res Commun 291:233–236. doi:10.1006/bbrc.2002.6452

    Article  CAS  PubMed  Google Scholar 

  20. LeBlanc H, Lawrence D, Varfolomeev E, et al. (2002) Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8:274–281. doi:10.1038/nm0302-274

    Article  CAS  PubMed  Google Scholar 

  21. Azijli K, Weyhenmeyer B, Peters GJ, et al. (2013) Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ 20:858–868. doi:10.1038/cdd.2013.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. von Karstedt S, Conti A, Nobis M, et al. (2015) Cancer cell-autonomous TRAIL-R Signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27:561–573. doi:10.1016/j.ccell.2015.02.014

    Article  Google Scholar 

  23. Li Z, Xu X, Bai L, et al. (2011) Epidermal growth factor receptor-mediated tissue transglutaminase overexpression couples acquired tumor necrosis factor-related apoptosis-inducing ligand resistance and migration through c-FLIP and MMP-9 proteins in lung cancer cells. J Biol Chem 286:21164–21172. doi:10.1074/jbc.M110.207571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Azijli K, Yuvaraj S, Peppelenbosch MP, et al. (2012) Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3-dependent invasion in resistant non-small cell lung cancer cells. J Cell Sci 125:4651–4661. doi:10.1242/jcs.109587

    Article  CAS  PubMed  Google Scholar 

  25. Trauzold A, Siegmund D, Schniewind B, et al. (2006) TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25:7434–7439. doi:10.1038/sj.onc.1209719

    Article  CAS  PubMed  Google Scholar 

  26. López-Otín C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808. doi:10.1038/nrc2228

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Bhabha Atomic Research Centre, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavani S. Shankar.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Additional information

Shyama Pal and Prayag J. Amin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Amin, P.J., Sainis, K.B. et al. Potential Role of TRAIL in Metastasis of Mutant KRAS Expressing Lung Adenocarcinoma. Cancer Microenvironment 9, 77–84 (2016). https://doi.org/10.1007/s12307-016-0184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-016-0184-3

Keywords

Navigation