Skip to main content

Advertisement

Log in

Macrophage Infiltration in Tumor Stroma is Related to Tumor Cell Expression of CD163 in Colorectal Cancer

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

The scavenger receptor, CD163, is a macrophage-specific marker. Recent studies have shown that CD163 expression in breast and rectal cancer cells is associated with poor prognosis. This study was conducted to evaluate the relationship between CD163 expression as a macrophage trait in cancer cells, and macrophage infiltration and its clinical significance in colorectal cancer. Immunostaining of CD163 and macrophage infiltration were evaluated in paraffin-embedded specimens, earlier analyzed for CD31, D2-40 and S-phase fraction, from primary tumors and normal colorectal mucosa of 75 patients with colorectal carcinoma. The outcomes were analyzed in relation to clinical-pathological data. CD163 expression was positive in cancer cells in 20 % of colorectal cancer patients and was related to advanced tumor stages (P = 0.008) and unfavorable prognosis (p = 0.001). High macrophage infiltration was related to shorter survival and positive CD163 expression in tumor cells. The prognostic impact of macrophage infiltration was independent of tumor stage and CD163 expression in cancer cells (p = 0.034). The expression of macrophage phenotype in colorectal cancer cells is associated with macrophage density in tumor stroma and lower survival rates. Macrophage infiltration has an independent prognostic impact on mortality in colorectal cancer. In accordance with previous experimental studies, these findings provide new insights into the role of macrophages in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  2. Lin EY, Pollard JW (2007) Tumor-Associated Macrophages Press the Angiogenic Switch in Breast Cancer. Cancer Res 67(11):5064–5066

    Article  CAS  PubMed  Google Scholar 

  3. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-Associated Macrophages are a Distinct M2 Polarised Population Promoting Tumour Progression: Potential Targets of Anti-Cancer Therapy. Eur J Cancer 42(6):717–727

    Article  CAS  PubMed  Google Scholar 

  4. Cecconi O, Calorini L, Mannini A, Mugnai G, Ruggieri S (1997) Enhancement of Lung-Colonizing Potential of Murine Tumor Cell Lines co-Cultivated With Activated Macrophages. Clin Exp Metastasis 15(2):94–101

    Article  CAS  PubMed  Google Scholar 

  5. Oosterling SJ, van der Bij GJ, Meijer GA, Tuk CW, van Garderen E, van Rooijen N, Meijer S, van der Sijp JR, Beelen RH, van Egmond M (2005) Macrophages Direct Tumour Histology and Clinical Outcome in a Colon Cancer Model. J Pathol 207(2):147–155. doi:10.1002/path.1830

    Article  PubMed  Google Scholar 

  6. Miselis NR, Wu ZJ, Van Rooijen N, Kane AB (2008) Targeting Tumor-Associated Macrophages in an Orthotopic Murine Model of Diffuse Malignant Mesothelioma. Mol Cancer Ther 4:788–799. doi:10.1158/1535-7163.MCT-07-0579

    Article  Google Scholar 

  7. Bingle L, Brown NJ, Lewis CE (2002) The Role of Tumour-Associated Macrophages in Tumour Progression: Implications for new Anticancer Therapies. J Pathol 196(3):254–265. doi:10.1002/path.1027 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Tan SY, Fan Y, Luo HS, Shen ZX, Guo Y, Zhao LJ (2005) Prognostic Significance of Cell Infiltrations of Immunosurveillance in Colorectal Cancer. World J Gastroenterol 11(8):1210–1214

    PubMed  Google Scholar 

  9. Lackner C, Jukic Z, Tsybrovskyy O, Jatzko G, Wette V, Hoefler G, Klimpfinger M, Denk H, Zatloukal K (2004) Prognostic Relevance of Tumour-Associated Macrophages and von Willebrand Factor-Positive Microvessels in Colorectal Cancer. Virchows Arch 445(2):160–167. doi:10.1007/s00428-004-1051-z

    Article  CAS  PubMed  Google Scholar 

  10. Dvorak HF (1986) Tumors: Wounds That do not healSimilarities Between Tumor Stroma Generation and Wound Healing. N Engl J Med 315(26):1650–1659

    Article  CAS  PubMed  Google Scholar 

  11. Murdoch C, Lewis CE (2005) Macrophage Migration and Gene Expression in Response to Tumor Hypoxia. Int j of cancer J int du cancer 117(5):701–708. doi:10.1002/ijc.21422

    Article  CAS  Google Scholar 

  12. Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, Kuo ML, Lee YC, Yang PC (2003) Up-Regulation of Tumor Interleukin-8 Expression by Infiltrating Macrophages: Its Correlation With Tumor Angiogenesis and Patient Survival in non-Small Cell Lung Cancer. Clin Cancer Res 9(2):729–737

    CAS  PubMed  Google Scholar 

  13. Sundar SS, Ganesan TS (2007) Role of Lymphangiogenesis in Cancer. J Clin Oncol 25(27):4298–4307. doi:10.1200/JCO.2006.07.1092

    Article  CAS  PubMed  Google Scholar 

  14. Vassilopoulos G, Russell DW (2003) Cell Fusion: An Alternative to Stem Cell Plasticity and its Therapeutic Implications. Curr Opin Genet Dev 13(5):480–485

    Article  CAS  PubMed  Google Scholar 

  15. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of Bone-Marrow-Derived Cells With Purkinje Neurons, Cardiomyocytes and Hepatocytes. Nature 425(6961):968–973

    Article  CAS  PubMed  Google Scholar 

  16. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE (2004) Bone Marrow-Derived Hematopoietic Cells Generate Cardiomyocytes at a low Frequency Through Cell Fusion, but not Transdifferentiation. Nat Med 10(5):494–501

    Article  CAS  PubMed  Google Scholar 

  17. Chakraborty AK, de Freitas SJ, Espreafico EM, Pawelek JM (2001) Human Monocyte x Mouse Melanoma Fusion Hybrids Express Human Gene. Gene 275(1):103–106

    Article  CAS  PubMed  Google Scholar 

  18. Chakraborty AK, Pawelek J (2007) Beta1,6-Branched Oligosaccharides Regulate Melanin Content and Motility in Macrophage-Melanoma Fusion Hybrids. Melanoma Res 17(1):9–16

    Article  CAS  PubMed  Google Scholar 

  19. Chakraborty AK, Sodi S, Rachkovsky M, Kolesnikova N, Platt JT, Bolognia JL, Pawelek JM (2000) A Spontaneous Murine Melanoma Lung Metastasis Comprised of Host x Tumor Hybrids. Cancer Res 60(9):2512–2519

    CAS  PubMed  Google Scholar 

  20. Pawelek JM (2008) Cancer-Cell Fusion With Migratory Bone-Marrow-Derived Cells as an Explanation for Metastasis: new Therapeutic Paradigms. Future Oncol 4(4):449–452

    Article  PubMed  Google Scholar 

  21. Pawelek JM, Chakraborty AK (2008) Fusion of Tumour Cells With Bone Marrow-Derived Cells: A Unifying Explanation for Metastasis. Nat Rev Cancer 8(5):377–386

    Article  CAS  PubMed  Google Scholar 

  22. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, Wong MH (2011) Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res 71 (4):1497–1505. doi:0008–5472.CAN-10-3223 [pii]10.1158/0008-5472.CAN-10-3223

  23. Silk AD, Gast CE, Davies PS, Fakhari FD, Vanderbeek GE, Mori M, Wong MH (2013) Fusion Between Hematopoietic and Epithelial Cells in Adult Human Intestine. PLoS One 8(1):e55572. doi:10.1371/journal.pone.0055572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chakraborty A, Lazova R, Davies S, Backvall H, Ponten F, Brash D, Pawelek J (2004) Donor DNA in a Renal Cell Carcinoma Metastasis from a Bone Marrow Transplant Recipient. Bone Marrow Transplant 34(2):183–186. doi:10.1038/sj.bmt.17045471704547 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Yilmaz Y, Lazova R, Qumsiyeh M, Cooper D, Pawelek J (2005) Donor Y Chromosome in Renal Carcinoma Cells of a Female BMT Recipient: Visualization of Putative BMT-Tumor Hybrids by FISH. Bone Marrow Transplant 35(10):1021–1024

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen TT, Schwartz EJ, West RB, Warnke RA, Arber DA, Natkunam Y (2005) Expression of CD163 (Hemoglobin Scavenger Receptor) in Normal Tissues, Lymphomas, Carcinomas, and Sarcomas is Largely Restricted to the Monocyte/Macrophage Lineage. Am J Surg Pathol 29(5):617–624

    Article  PubMed  Google Scholar 

  27. Shabo I, Stal O, Olsson H, Dore S, Svanvik J (2008) Breast Cancer Expression of CD163, a Macrophage Scavenger Receptor, is Related to Early Distant Recurrence and Reduced Patient Survival. Int j of cancer J int du cancer 123(4):780–786

    Article  CAS  Google Scholar 

  28. Shabo I, Olsson H, Sun XF, Svanvik J (2009) Expression of the Macrophage Antigen CD163 in Rectal Cancer Cells is Associated With Early Local Recurrence and Reduced Survival Time. Int j of cancer J int du cancer. doi:10.1002/ijc.24506

    Google Scholar 

  29. Larizza L, Schirrmacher V, Pfluger E (1984) Acquisition of High Metastatic Capacity After in Vitro Fusion of a Nonmetastatic Tumor Line With a Bone Marrow-Derived Macrophage. J Exp Med 160(5):1579–1584

    Article  CAS  PubMed  Google Scholar 

  30. Larsson LI, Bjerregaard B, Wulf-Andersen L, Talts JF (2007) Syncytin and Cancer Cell Fusions. ScientificWorldJournal 7:1193–1197. doi:10.1100/tsw.2007.212

    Article  CAS  PubMed  Google Scholar 

  31. Pawelek J, Chakraborty A, Lazova R, Yilmaz Y, Cooper D, Brash D, Handerson T (2006) Co-Opting Macrophage Traits in Cancer Progression: A Consequence of Tumor Cell Fusion? Contrib Microbiol 13:138–155

    Article  PubMed  Google Scholar 

  32. Pawelek JM (2005) Tumour-Cell Fusion as a Source of Myeloid Traits in Cancer. Lancet Oncol 6(12):988–993

    Article  CAS  PubMed  Google Scholar 

  33. Chakraborty AK, Pawelek J, Ikeda Y, Miyoshi E, Kolesnikova N, Funasaka Y, Ichihashi M, Taniguchi N (2001) Fusion Hybrids With Macrophage and Melanoma Cells up-Regulate N-Acetylglucosaminyltransferase V, beta1-6 Branching, and Metastasis. Cell Growth Differ 12(12):623–630

    CAS  PubMed  Google Scholar 

  34. Droste A, Sorg C, Hogger P (1999) Shedding of CD163, a Novel Regulatory Mechanism for a Member of the Scavenger Receptor Cysteine-Rich Family. Biochem Biophys Res Commun 256(1):110–113

    Article  CAS  PubMed  Google Scholar 

  35. Hogger P, Dreier J, Droste A, Buck F, Sorg C (1998) Identification of the Integral Membrane Protein RM3/1 on Human Monocytes as a Glucocorticoid-Inducible Member of the Scavenger Receptor Cysteine-Rich Family (CD163). J Immunol 161(4):1883–1890

    CAS  PubMed  Google Scholar 

  36. Schluter C, Duchrow M, Wohlenberg C, Becker MH, Key G, Flad HD, Gerdes J (1993) The Cell Proliferation-Associated Antigen of Antibody Ki-67: A Very Large, Ubiquitous Nuclear Protein With Numerous Repeated Elements, Representing a new Kind of Cell Cycle-Maintaining Proteins. J Cell Biol 123(3):513–522

    Article  CAS  PubMed  Google Scholar 

  37. Li SH, Li CF, Sung MT, Eng HL, Hsiung CY, Huang WW, Lin CN, Yu SC, Huang HY (2007) Skp2 is an Independent Prognosticator of Gallbladder Carcinoma Among p27 (Kip1)-Interacting Cell Cycle Regulators: An Immunohistochemical Study of 62 Cases by Tissue Microarray. Mod Pathol 20(4):497–507. doi:10.1038/modpathol.3800762

    Article  CAS  PubMed  Google Scholar 

  38. Roy S, Chu A, Trojanowski JQ, Zhang PJ (2005) D2-40, a Novel Monoclonal Antibody Against the M2A Antigen as a Marker to Distinguish Hemangioblastomas from Renal Cell Carcinomas. Acta Neuropathol 109(5):497–502. doi:10.1007/s00401-005-0999-3

    Article  CAS  PubMed  Google Scholar 

  39. Sharma S, Sharma MC, Sarkar C (2005) Morphology of Angiogenesis in Human Cancer: A Conceptual Overview, Histoprognostic Perspective and Significance of Neoangiogenesis. Histopathology 46(5):481–489. doi:10.1111/j.1365-2559.2005.02142.x

    Article  CAS  PubMed  Google Scholar 

  40. Adell G, Zhang H, Jansson A, Sun XF, Stal O, Nordenskjold B (2001) Decreased Tumor Cell Proliferation as an Indicator of the Effect of Preoperative Radiotherapy of Rectal Cancer. Int J Radiat Oncol Biol Phys 50(3):659–663

    Article  CAS  PubMed  Google Scholar 

  41. Gao J, Knutsen A, Arbman G, Carstensen J, Franlund B, Sun XF (2009) Clinical and Biological Significance of Angiogenesis and Lymphangiogenesis in Colorectal Cancer. Dig Liver Dis 41(2):116–122. doi:10.1016/j.dld.2008.07.315

    Article  CAS  PubMed  Google Scholar 

  42. Kundel HL, Polansky M (2003) Measurement of Observer Agreement. Radiology 228(2):303–308

    Article  PubMed  Google Scholar 

  43. Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, Pezzella F, Viale G, Weidner N, Harris AL, Dirix LY (1996) Quantification of Angiogenesis in Solid Human Tumours: An International Consensus on the Methodology and Criteria of Evaluation. Eur J Cancer 32A(14):2474–2484

    Article  CAS  PubMed  Google Scholar 

  44. Jansson A, Sun XF (1997) Ki-67 Expression in Relation to Clinicopathological Variables and Prognosis in Colorectal Adenocarcinomas. APMIS 105(9):730–734

    Article  CAS  PubMed  Google Scholar 

  45. Sun XF, Carstensen JM, Stal O, Zhang H, Nilsson E, Sjodahl R, Nordenskjold B (1993) Prognostic Significance of p53 Expression in Relation to DNA Ploidy in Colorectal Adenocarcinoma. Virchows Arch A Pathol Anat Histopathol 423(6):443–448

    Article  CAS  PubMed  Google Scholar 

  46. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage Plasticity and Polarization in Tissue Repair and Remodelling. J Pathol 229(2):176–185. doi:10.1002/path.4133

    Article  CAS  PubMed  Google Scholar 

  47. Riboldi E, Porta C, Morlacchi S, Viola A, Mantovani A, Sica A (2013) Hypoxia-Mediated Regulation of Macrophage Functions in Pathophysiology. Int Immunol 25(2):67–75. doi:10.1093/intimm/dxs110

    Article  CAS  PubMed  Google Scholar 

  48. Alexander P, Eccles SA, Gauci CL (1976) The Significance of Macrophages in Human and Experimental Tumors. Ann N Y Acad Sci 276:124–133

    Article  CAS  PubMed  Google Scholar 

  49. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C (2004) Enhanced Invasiveness of Breast Cancer Cell Lines Upon co-Cultivation With Macrophages is due to TNF-Alpha Dependent up-Regulation of Matrix Metalloproteases. Carcinogenesis 25(8):1543–1549. doi:10.1093/carcin/bgh146bgh146 [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Leber TM, Balkwill FR (1998) Regulation of Monocyte MMP-9 Production by TNF-Alpha and a Tumour-Derived Soluble Factor (MMPSF). Br J Cancer 78(6):724–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick MJ, Borg A, Micke P, Egevad L, Ostman A (2009) CXCL14 is an Autocrine Growth Factor for Fibroblasts and Acts as a Multi-Modal Stimulator of Prostate Tumor Growth. Proc Natl Acad Sci U S A 106(9):3414–3419. doi:10.1073/pnas.0813144106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Shabo IOH, Sun XF, Svanvik J (2009) Expression of the Macrophage Antigen CD163 in Rectal Cancer Cells is Associated With Early Local Recurrence and Reduced Survival Time. Int J Cancer Accepted in Mars 2009

  53. Busund LT, Killie MK, Bartnes K, Seljelid R (2003) Spontaneously Formed Tumorigenic Hybrids of Meth A Sarcoma Cells and Macrophages in Vivo. Int j of cancer J int du cancer 106(2):153–159

    Article  CAS  Google Scholar 

  54. Rachkovsky M, Sodi S, Chakraborty A, Avissar Y, Bolognia J, McNiff JM, Platt J, Bermudes D, Pawelek J (1998) Melanoma x Macrophage Hybrids With Enhanced Metastatic Potential. Clin Exp Metastasis 16(4):299–312

    Article  CAS  PubMed  Google Scholar 

  55. Busund LT, Killie MK, Bartnes K, Seljelid R (2002) Spontaneously Formed Tumorigenic Hybrids of Meth A Sarcoma and Macrophages Grow Faster and are Better Vascularized Than the Parental Tumor. Int j of cancer J int du cancer 100(4):407–413

    Article  CAS  Google Scholar 

  56. Nygren JM, Liuba K, Breitbach M, Stott S, Thoren L, Roell W, Geisen C, Sasse P, Kirik D, Bjorklund A, Nerlov C, Fleischmann BK, Jovinge S, Jacobsen SE (2008) Myeloid and Lymphoid Contribution to non-Haematopoietic Lineages Through Irradiation-Induced Heterotypic Cell Fusion. Nat Cell Biol 10(5):584–592

    Article  CAS  PubMed  Google Scholar 

  57. Johansson CB, Youssef S, Koleckar K, Holbrook C, Doyonnas R, Corbel SY, Steinman L, Rossi FM, Blau HM (2008) Extensive Fusion of Haematopoietic Cells With Purkinje Neurons in Response to Chronic Inflammation. Nat Cell Biol 10(5):575–583. doi:10.1038/ncb1720

    Article  CAS  PubMed  Google Scholar 

  58. Liu C, Chen Z, Zhang T, Lu Y (2006) Multiple Tumor Types may Originate from Bone Marrow-Derived Cells. Neoplasia 8(9):716–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, Wong MH Fusion between Intestinal Epithelial Cells and Macrophages in a Cancer Context Results in Nuclear Reprogramming. Cancer Res 71 (4):1497–1505. doi:10.1158/0008-5472.CAN-10-3223

  60. Pawelek JM, Chakraborty AK (2008) The Cancer Cell--Leukocyte Fusion Theory of Metastasis. Adv Cancer Res 101:397–444. doi:10.1016/S0065-230X(08)00410-7

    Article  CAS  PubMed  Google Scholar 

  61. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC (2004) Gastric Cancer Originating from Bone Marrow-Derived Cells. Science 306(5701):1568–1571. doi:10.1126/science.1099513

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to members of the South-East Sweden Colorectal Cancer Group for providing us with clinical data. Thanks are due to Mrs. Birgitta Frånlund for valuable help with the immunohistochemistry. The work was supported by The Health Research Council in the South-East of Sweden.

Sources of support

County Council of Östergötland, Sweden.

Competing of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Shabo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabo, I., Olsson, H., Elkarim, R. et al. Macrophage Infiltration in Tumor Stroma is Related to Tumor Cell Expression of CD163 in Colorectal Cancer. Cancer Microenvironment 7, 61–69 (2014). https://doi.org/10.1007/s12307-014-0145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-014-0145-7

Keywords

Navigation