Skip to main content

Advertisement

Log in

The Immune Microenvironment of Myeloma

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

The bone marrow (BM) is the site of disease in myeloma and possesses unique immune characteristics involved in the pathobiology of the disease. Interactions of plasma cells with stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells make up the unique bone marrow milieu that mediates myeloma disease progression. Independently or through a complex network of interactions these cells impart immune changes leading to immune evasion and disease progression. The critical role of these factors in disease progression has led to the intense development of therapeutic strategies aimed at either disrupting the immune mechanisms mediating disease progression or augmenting those with anti-tumor benefits. This review discusses the major contributors of immunity in the bone marrow microenvironment, their interactions, and mechanisms whereby immune modulation can be translated into therapies with anti-myeloma efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahindra A, Hideshima T, Anderson KC (2010) Multiple myeloma: biology of the disease. Blood Rev 24(Suppl 1):S5–11

    PubMed  Google Scholar 

  2. Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF et al (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 346(8):564–9

    PubMed  Google Scholar 

  3. Kyle RA, Rajkumar SV (2007) Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Hematol Oncol Clin North Am 21(6):1093–113, ix

    PubMed  Google Scholar 

  4. Kyle RA, Rajkumar SV (2007) Monoclonal gammopathy of undetermined significance and smouldering multiple myeloma: emphasis on risk factors for progression. Br J Haematol 139(5):730–43

    PubMed  CAS  Google Scholar 

  5. Spisek R, Kukreja A, Chen LC, Matthews P, Mazumder A, Vesole D et al (2007) Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 204(4):831–40, PMCID: 2118551

    PubMed  CAS  Google Scholar 

  6. Dhodapkar KM, Barbuto S, Matthews P, Kukreja A, Mazumder A, Vesole D et al (2008) Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood 112(7):2878–85, PMCID: 2556623

    PubMed  CAS  Google Scholar 

  7. Gupta R, Ganeshan P, Hakim M, Verma R, Sharma A (2010) Kumar L. Significantly reduced regulatory T cell population in patients with untreated multiple myeloma, Leuk Res

    Google Scholar 

  8. Noonan K, Marchionni L, Anderson J, Pardoll D, Roodman GD, Borrello I (2010) A novel role of IL-17 producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood

  9. von Lilienfeld-Toal M, Frank S, Leyendecker C, Feyler S, Jarmin S, Morgan R et al (2010) Reduced immune effector cell NKG2D expression and increased levels of soluble NKG2D ligands in multiple myeloma may not be causally linked. Cancer Immunol Immunother 59(6):829–39

    CAS  Google Scholar 

  10. Dhodapkar MV (2011) Richter J. Progress and challenges. Clin Immunol, Harnessing natural killer T (NKT) cells in human myeloma

    Google Scholar 

  11. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B et al (2002) Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100(1):230–7

    PubMed  CAS  Google Scholar 

  12. Shah N, Lonial S (2010) Evidence-based mini-review: treatment options for patients with relapsed/refractory myeloma previously treated with novel agents and high-dose chemotherapy and autologous stem-cell transplantation. Hematology Am Soc Hematol Educ Program 2010:310–3

    PubMed  Google Scholar 

  13. Harousseau JL (2010) Multiple myeloma in the elderly: when to treat, when to go to transplant. Oncology (Williston Park) 24(11):992–8

    Google Scholar 

  14. Kumar A, Galeb S, Djulbegovic B (2011) Treatment of patients with multiple myeloma: an overview of systematic reviews. Acta Haematol 125(1–2):8–22

    PubMed  CAS  Google Scholar 

  15. Lacy MQ (2011) New immunomodulatory drugs in myeloma. Curr Hematol Malig Rep

  16. Harousseau JL (2010) Ten years of improvement in the management of multiple myeloma: 2000–2010. Clin Lymphoma Myeloma Leuk 10(6):424–42

    PubMed  CAS  Google Scholar 

  17. van de Donk NW, Lokhorst HM, Dimopoulos M, Cavo M, Morgan G, Einsele H et al (2011) Treatment of relapsed and refractory multiple myeloma in the era of novel agents. Cancer Treat Rev 37(4):266–83

    PubMed  Google Scholar 

  18. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W et al (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203(12):2691–702, PMCID: 2118163

    PubMed  CAS  Google Scholar 

  19. Rollig C, Schmidt C, Bornhauser M, Ehninger G, Schmitz M, Auffermann-Gretzinger S (2011) Induction of cellular immune responses in patients with stage-I multiple myeloma after vaccination with autologous idiotype-pulsed dendritic cells. J Immunother 34(1):100–6

    PubMed  Google Scholar 

  20. Yi Q, Szmania S, Freeman J, Qian J, Rosen NA, Viswamitra S et al (2010) Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol 150(5):554–64, PMCID: 2924470

    PubMed  CAS  Google Scholar 

  21. Noonan K, Matsui W, Serafini P, Carbley R, Tan G, Khalili J et al (2005) Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res 65(5):2026–34

    PubMed  CAS  Google Scholar 

  22. Barber A, Meehan KR, Sentman CL (2011) Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther

  23. Ocadlikova D, Kryukov F, Mollova K, Kovarova L, Buresdova I, Matejkova E et al (2010) Generation of myeloma-specific T cells using dendritic cells loaded with MUC1- and hTERT- drived nonapeptides or myeloma cell apoptotic bodies. Neoplasma 57(5):455–64

    PubMed  CAS  Google Scholar 

  24. Pilarski LM, Hipperson G, Seeberger K, Pruski E, Coupland RW, Belch AR (2000) Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood 95(3):1056–65

    PubMed  CAS  Google Scholar 

  25. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al (2004) Characterization of clonogenic multiple myeloma cells. Blood 103(6):2332–6

    PubMed  CAS  Google Scholar 

  26. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68(1):190–7

    PubMed  CAS  Google Scholar 

  27. Yaccoby S, Barlogie B, Epstein J (1998) Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 92(8):2908–13

    PubMed  CAS  Google Scholar 

  28. Yaccoby S, Epstein J (1999) The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood 94(10):3576–82

    PubMed  CAS  Google Scholar 

  29. Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K (1992) Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80(9):2326–35

    PubMed  CAS  Google Scholar 

  30. Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411(6835):349–54

    PubMed  CAS  Google Scholar 

  31. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104(10):4048–53, PMCID: 1805487

    PubMed  CAS  Google Scholar 

  32. Agarwal JR, Matsui W (2010) Multiple myeloma: a paradigm for translation of the cancer stem cell hypothesis. Anticancer Agents Med Chem 10(2):116–20, PMCID: 3033115

    PubMed  CAS  Google Scholar 

  33. Landgren O, Kyle RA, Rajkumar SV (2011) From myeloma precursor disease to multiple myeloma: new diagnostic concepts and opportunities for early intervention. Clin Cancer Res 17(6):1243–52

    PubMed  Google Scholar 

  34. Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5(3):230–42

    PubMed  CAS  Google Scholar 

  35. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KG, Dorner T et al (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6(10):741–50

    PubMed  CAS  Google Scholar 

  36. Bergsagel PL, Kuehl WM (2005) Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 23(26):6333–8

    PubMed  CAS  Google Scholar 

  37. Teoh G, Anderson KC (1997) Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma. Hematol Oncol Clin North Am 11(1):27–42

    PubMed  CAS  Google Scholar 

  38. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC (1993) Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 82(12):3712–20

    PubMed  CAS  Google Scholar 

  39. Dhodapkar MV, Abe E, Theus A, Lacy M, Langford JK, Barlogie B et al (1998) Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood 91(8):2679–88

    PubMed  CAS  Google Scholar 

  40. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93(5):1658–67

    PubMed  CAS  Google Scholar 

  41. Cao Y, Luetkens T, Kobold S, Hildebrandt Y, Gordic M, Lajmi N et al (2010) The cytokine/chemokine pattern in the bone marrow environment of multiple myeloma patients. Exp Hematol 38(10):860–7

    PubMed  CAS  Google Scholar 

  42. Medinger M, Fischer N, Tzankov A (2010) Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. J Oncol 2010:729725, PMCID: 2875768

    PubMed  Google Scholar 

  43. Lauta VM (2003) A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer 97(10):2440–52

    PubMed  CAS  Google Scholar 

  44. Hwang W, Jung K, Jeon Y, Yun S, Kim TW, Choi I (2010) Knockdown of the interleukin-6 receptor alpha chain of dendritic cell vaccines enhances the therapeutic potential against IL-6 producing tumors. Vaccine 29(1):34–44

    PubMed  CAS  Google Scholar 

  45. Chan KF, Siegel MR, Lenardo JM (2000) Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity 13(4):419–22

    PubMed  CAS  Google Scholar 

  46. Richardson P, Hideshima T, Anderson K (2002) Thalidomide: emerging role in cancer medicine. Annu Rev Med 53:629–57

    PubMed  CAS  Google Scholar 

  47. Sawamura M, Murakami H, Tsuchiya J (1996) Tumor necrosis factor-alpha and interleukin 4 in myeloma cell precursor differentiation. Leuk Lymphoma 21(1–2):31–6

    PubMed  CAS  Google Scholar 

  48. Abildgaard N, Glerup H, Rungby J, Bendix-Hansen K, Kassem M, Brixen K et al (2000) Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma. Eur J Haematol 64(2):121–9

    PubMed  CAS  Google Scholar 

  49. Du J, Yuan Z, Zhang C, Fu W, Jiang H, Chen B et al (2010) Role of the TNF-alpha promoter polymorphisms for development of multiple myeloma and clinical outcome in thalidomide plus dexamethasone. Leuk Res 34(11):1453–8

    PubMed  CAS  Google Scholar 

  50. Roodman GD (2010) Targeting the bone microenvironment in multiple myeloma. J Bone Miner Metab 28(3):244–50

    PubMed  Google Scholar 

  51. Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA (2006) A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 24(4):986–91

    PubMed  CAS  Google Scholar 

  52. Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD et al (2000) Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 96(2):671–5

    PubMed  CAS  Google Scholar 

  53. Giuliani N, Colla S, Rizzoli V (2004) New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-kappaB ligand (RANKL). Exp Hematol 32(8):685–91

    PubMed  CAS  Google Scholar 

  54. Ehrlich LA, Roodman GD (2005) The role of immune cells and inflammatory cytokines in Paget’s disease and multiple myeloma. Immunol Rev 208:252–66

    PubMed  CAS  Google Scholar 

  55. Sezer O, Heider U, Jakob C, Zavrski I, Eucker J, Possinger K et al (2002) Immunocytochemistry reveals RANKL expression of myeloma cells. Blood 99(12):4646–7, author reply 7

    PubMed  CAS  Google Scholar 

  56. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J et al (2011) Randomized, double-blind study of denosumab versus zoledronic Acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29(9):1125–32

    PubMed  CAS  Google Scholar 

  57. Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T et al (2004) Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104(8):2484–91

    PubMed  CAS  Google Scholar 

  58. Anderson KC, Jones RM, Morimoto C, Leavitt P, Barut BA (1989) Response patterns of purified myeloma cells to hematopoietic growth factors. Blood 73(7):1915–24

    PubMed  CAS  Google Scholar 

  59. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W et al (2010) Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115(26):5385–92, PMCID: 2902136

    PubMed  CAS  Google Scholar 

  60. Takahashi N, Mundy GR, Roodman GD (1986) Recombinant human interferon-gamma inhibits formation of human osteoclast-like cells. J Immunol 137(11):3544–9

    PubMed  CAS  Google Scholar 

  61. Abstracts of the American Society of Hematology 46th Annual Meeting. December 4–7, 2004, San Diego, California, USA. Blood. 2004;104(11 Pt 1):1a-1093a

  62. Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S et al (2005) IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 106(4):1407–14

    PubMed  CAS  Google Scholar 

  63. Letsch A, Keilholz U, Assfalg G, Mailander V, Thiel E, Scheibenbogen C (2003) Bone marrow contains melanoma-reactive CD8+ effector T cells and, compared with peripheral blood, enriched numbers of melanoma-reactive CD8+ memory T cells. Cancer Res 63(17):5582–6

    PubMed  CAS  Google Scholar 

  64. Zhang X, Dong H, Lin W, Voss S, Hinkley L, Westergren M et al (2006) Human bone marrow: a reservoir for “enhanced effector memory” CD8+ T cells with potent recall function. J Immunol 177(10):6730–7

    PubMed  CAS  Google Scholar 

  65. Nitta H, Mihara K, Sakai A, Kimura A (2010) Expansion of CD8+/perforin+ effector memory T cells in the bone marrow of patients with thymoma-associated pure red cell aplasia. Br J Haematol 150(6):712–5

    PubMed  Google Scholar 

  66. Dhodapkar MV, Krasovsky J, Olson K (2002) T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proc Natl Acad Sci USA 99(20):13009–13, PMCID: 130577

    PubMed  CAS  Google Scholar 

  67. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P et al (2004) Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64(22):8451–5

    PubMed  CAS  Google Scholar 

  68. Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE et al (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72(6):540–7

    PubMed  CAS  Google Scholar 

  69. Feyler S, von Lilienfeld-Toal M, Jarmin S, Marles L, Rawstron A, Ashcroft AJ et al (2009) CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−)alphabetaTCR(+) Double Negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 144(5):686–95

    PubMed  Google Scholar 

  70. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–8

    PubMed  CAS  Google Scholar 

  71. Korn T, Mitsdoerffer M, Croxford AL, Awasthi A, Dardalhon VA, Galileos G et al (2008) IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 105(47):18460–5, PMCID: 2587589

    PubMed  CAS  Google Scholar 

  72. Jerud ES, Bricard G, Prorcelli SA (2006) CD1d-restricted natural killer T cells: roles in tumor immunosurveillance and tolerance. Transf Med Hemother 33(1):18–36

    Google Scholar 

  73. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4(3):231–7

    PubMed  CAS  Google Scholar 

  74. Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL (2011) NK cells and immune “memory”. J Immunol 186(4):1891–7

    PubMed  CAS  Google Scholar 

  75. Dhodapkar MV, Krasovsky J, Osman K, Geller MD (2003) Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 198(11):1753–7

    PubMed  CAS  Google Scholar 

  76. Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M et al (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201(9):1503–17, PMCID: 1389847

    PubMed  CAS  Google Scholar 

  77. Gorgun G, Calabrese E, Soydan E, Hideshima T, Perrone G, Bandi M et al (2010) Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 116(17):3227–37, PMCID: 2995353

    PubMed  CAS  Google Scholar 

  78. Brown R, Murray A, Pope B, Sze DM, Gibson J, Ho PJ et al (2004) Either interleukin-12 or interferon-gamma can correct the dendritic cell defect induced by transforming growth factor beta in patients with myeloma. Br J Haematol 125(6):743–8

    PubMed  CAS  Google Scholar 

  79. Rosenblatt J, Vasir B, Uhl L, Blotta S, Macnamara C, Somaiya P et al (2011) Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 117(2):393–402, PMCID: 3031474

    PubMed  CAS  Google Scholar 

  80. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–74, PMCID: 2828349

    PubMed  CAS  Google Scholar 

  81. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP et al (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116(10):2777–90, PMCID: 1578632

    PubMed  CAS  Google Scholar 

  82. Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S et al (2009) IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182(10):6562–8

    PubMed  CAS  Google Scholar 

  83. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16(1):53–65

    PubMed  CAS  Google Scholar 

  84. Medina MA, Quesada AR, Nunez de Castro I, Sanchez-Jimenez F (1999) Histamine, polyamines, and cancer. Biochem Pharmacol 57(12):1341–4

    PubMed  CAS  Google Scholar 

  85. Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G et al (1999) Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 162(6):3356–66

    PubMed  CAS  Google Scholar 

  86. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70(11):4335–45

    PubMed  CAS  Google Scholar 

  87. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61(12):4756–60

    PubMed  CAS  Google Scholar 

  88. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J et al (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65(8):3044–8

    PubMed  CAS  Google Scholar 

  89. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59

    PubMed  CAS  Google Scholar 

  90. Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X et al (2010) Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate 70(4):443–455, PMCID: 2935631

    PubMed  CAS  Google Scholar 

  91. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68(13):5439–5449, PMCID: 2887390

    PubMed  CAS  Google Scholar 

  92. Schilling T, Noth U, Klein-Hitpass L, Jakob F, Schutze N (2007) Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Mol Cell Endocrinol 271(1–2):1–17

    PubMed  CAS  Google Scholar 

  93. Tang CH, Lu DY, Yang RS, Tsai HY, Kao MC, Fu WM et al (2007) Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia. J Immunol 179(2):1292–1302

    PubMed  CAS  Google Scholar 

  94. Mouzaki A, Panagoulias I, Dervilli Z, Zolota V, Spadidea P, Rodi M et al (2009) Expression patterns of leptin receptor (OB-R) isoforms and direct in vitro effects of recombinant leptin on OB-R, leptin expression and cytokine secretion by human hematopoietic malignant cells. Cytokine 48(3):203–211

    PubMed  CAS  Google Scholar 

  95. Mattioli B, Straface E, Quaranta MG, Giordani L, Viora M (2005) Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J Immunol 174(11):6820–6828

    PubMed  CAS  Google Scholar 

  96. Mattioli B, Straface E, Matarrese P, Quaranta MG, Giordani L, Malorni W et al (2008) Leptin as an immunological adjuvant: enhanced migratory and CD8+ T cell stimulatory capacity of human dendritic cells exposed to leptin. FASEB J 22(6):2012–2022

    PubMed  CAS  Google Scholar 

  97. Robillard N, Avet-Loiseau H, Garand R, Moreau P, Pineau D, Rapp MJ et al (2003) CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma. Blood 102(3):1070–1071

    PubMed  CAS  Google Scholar 

  98. Vidal L, Gafter-Gvili A, Leibovici L, Dreyling M, Ghielmini M, Hsu Schmitz SF et al (2009) Rituximab maintenance for the treatment of patients with follicular lymphoma: systematic review and meta-analysis of randomized trials. J Natl Cancer Inst 101(4):248–255

    PubMed  CAS  Google Scholar 

  99. Rossi EA, Rossi DL, Stein R, Goldenberg DM, Chang CH (2010) A bispecific antibody-IFNalpha2b immunocytokine targeting CD20 and HLA-DR is highly toxic to human lymphoma and multiple myeloma cells. Cancer Res 70(19):7600–7609

    PubMed  CAS  Google Scholar 

  100. de Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC et al (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186(3):1840–1848

    PubMed  Google Scholar 

  101. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342

    PubMed  CAS  Google Scholar 

  102. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354(8):821–831

    PubMed  CAS  Google Scholar 

  103. Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J et al (2008) Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 26(30):4875–4882

    PubMed  CAS  Google Scholar 

  104. Terpos E, Efstathiou E, Christoulas D, Roussou M, Katodritou E, Dimopoulos MA (2009) RANKL inhibition: clinical implications for the management of patients with multiple myeloma and solid tumors with bone metastases. Expert Opin Biol Ther 9(4):465–479

    PubMed  CAS  Google Scholar 

  105. Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M et al (2006) A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 12(4):1221–1228

    PubMed  CAS  Google Scholar 

  106. Knight R (2005) IMiDs: a novel class of immunomodulators. Semin Oncol 32(4 Suppl 5):S24–S30

    PubMed  CAS  Google Scholar 

  107. Tageja N (2011) Lenalidomide—current understanding of mechanistic properties. Anticancer Agents Med Chem 11(3):315–326

    PubMed  CAS  Google Scholar 

  108. Gandhi AK, Kang J, Capone L, Parton A, Wu L, Zhang LH et al (2010) Dexamethasone synergizes with lenalidomide to inhibit multiple myeloma tumor growth, but reduces lenalidomide-induced immunomodulation of T and NK cell function. Curr Cancer Drug Targets 10(2):155–167

    PubMed  CAS  Google Scholar 

  109. Huang MC, Greig NH, Luo W, Tweedie D, Schwartz JB, Longo DL et al (2011) Preferential enhancement of older human T cell cytokine generation, chemotaxis, proliferation and survival by lenalidomide. Clin Immunol 138(2):201–211

    PubMed  CAS  Google Scholar 

  110. Galustian C, Meyer B, Labarthe MC, Dredge K, Klaschka D, Henry J et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58(7):1033–1045

    PubMed  CAS  Google Scholar 

  111. Noonan K, Ferguson A, Huff CA, Emerling A, Mgebroff S, Wilson R et al (2008) The immunomodulatory role of lenalidomide on Prevnar® responses in patients with relapsed multiple myeloma: a comprehensive analysis of the immune response. Blood (ASH Annual Meeting Abstracts) 112:2772

    Google Scholar 

  112. Dredge K, Marriott JB, Todryk SM, Muller GW, Chen R, Stirling DI et al (2002) Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J Immunol 168(10):4914–4919

    PubMed  CAS  Google Scholar 

  113. Anderson G, Gries M, Kurihara N, Honjo T, Anderson J, Donnenberg V et al (2006) Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood 107(8):3098–3105

    PubMed  CAS  Google Scholar 

  114. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L et al (2011) Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 117(3):788–797, PMCID: 3035073

    PubMed  CAS  Google Scholar 

  115. Siegel DS, Vij R, Vescio R, Borrello I, Martin TG, Berenson JR et al (2004) A phase I/II study of Xcellerated T cells after autologous peripheral blood stem cell transplantation in patients with multiple myeloma. Blood (ASH Annual Meeting Abstracts) 104:925

    Google Scholar 

  116. Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP et al (2011) Improving Adoptive T Cell Therapy by Targeting and Controlling IL-12 Expression to the Tumor Environment. Mol Ther 19(4):751–759

    PubMed  CAS  Google Scholar 

  117. Prieto PA, Durflinger KH, Wunderlich JR, Rosenberg SA, Dudley ME (2010) Enrichment of CD8+ cells from melanoma tumor-infiltrating lymphocyte cultures reveals tumor reactivity for use in adoptive cell therapy. J Immunother 33(5):547–556

    PubMed  Google Scholar 

  118. Kuball J, de Boer K, Wagner E, Wattad M, Antunes E, Weeratna RD et al (2011) Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol Immunother 60(2):161–171, PMCID: 3024516

    PubMed  CAS  Google Scholar 

  119. Maslak PG, Dao T, Krug LM, Chanel S, Korontsvit T, Zakhaleva V et al (2010) Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood 116(2):171–179, PMCID: 2910606

    PubMed  CAS  Google Scholar 

  120. Van Tendeloo VF, Van de Velde A, Van Driessche A, Cools N, Anguille S, Ladell K et al (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA 107(31):13824–13829, PMCID: 2922237

    PubMed  Google Scholar 

  121. Borrello I, Sotomayor EM, Rattis FM, Cooke SK, Gu L, Levitsky HI (2000) Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood 95(10):3011–3019

    PubMed  CAS  Google Scholar 

  122. Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L et al (2005) Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 11(11):1230–1237

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Borrello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noonan, K., Borrello, I. The Immune Microenvironment of Myeloma. Cancer Microenvironment 4, 313–323 (2011). https://doi.org/10.1007/s12307-011-0086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0086-3

Keywords

Navigation