Skip to main content
Log in

Natural Genome Editing from a Biocommunicative Perspective

  • Review
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Natural genome editing from a biocommunicative perspective is the competent agent-driven generation and integration of meaningful nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing integrates both natural editing of genetic code and epigenetic marking that determines genetic reading patterns. As agents that edit genetic code and epigenetically mark genomic structures, viral and subviral agents have been suggested because they may be evolutionarily older than cellular life. This hypothesis that viruses and viral-like agents edit genetic code is developed according to three well investigated examples that represent key evolutionary inventions in which non-lytic viral swarms act symbiotically in a persistent lifestyle within cellular host genomes: origin of eukaryotic nucleus, adaptive immunity, placental mammals. Additionally an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on the genetic code. Most of these RNA agents such as transposons, retroposons and small non-coding RNAs act consortially and are remnants of persistent viral infections that now act as co-opted adaptations in cellular key processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedon, S. (2011). Communication among phages, bacteria, and soil environments. In G. Witzany (Ed.), Biocommunication in soil microorganisms (pp. 37–65). Berlin: Springer.

    Google Scholar 

  • Amaral, P. P., Dinger, M. E., Mercer, T. R., & Mattick, J. S. (2008). The eukaryotic genome as an RNA machine. Science, 319, 1787–1789.

    PubMed  CAS  Google Scholar 

  • Ambros, V., & Chen, X. (2007). The regulation of genes and genomes by small RNAs. Development, 134, 1635–1641.

    PubMed  CAS  Google Scholar 

  • Armon, R. (2011). Soil bacteria and Bacteriophages. In G. Witzany (Ed.), Biocommunication in soil microorganisms (pp. 67–112). Berlin: Springer.

    Google Scholar 

  • Balakirev, E. S., & Ayala, F. J. (2003). Pseudogenes: are they “Junk” or Functional DNA? Annual Review of Genetics, 37, 123–151.

    PubMed  CAS  Google Scholar 

  • Baldi, P., & Brunak, S. (2001). Bioinformatics: The machine learning approach (2nd ed.). Cambridge: MIT Press.

    Google Scholar 

  • Bapteste, E., & Burian, R. M. (2010). On the need for integrative phylogenomics and some steps toward its creation. Biology and Philosophy, 25, 711–736.

    Google Scholar 

  • Baertsch, R., Diekhans, M., Kent, W. J., Haussler, D., & Brosius, J. (2008). Retrocopy contributions to the evolution of the human genome. BMC Genomics, 9, 466. doi:10.1186/1471-2164-9-466.

    PubMed  Google Scholar 

  • Barbieri, M. (2001). The organic codes. The birth of semantic biology. Ancona: PeQuod.

    Google Scholar 

  • Barbieri, M. (2007). (Ed) Introduction to Biosemiotics. Dordrecht, Springer.

  • Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism and function. Cell, 116, 281–297.

    PubMed  CAS  Google Scholar 

  • Bass, B. L. (2002). RNA editing by adenosine deaminases that act on RNA. Annual Reviews in Biochemistry, 71, 817–846.

    CAS  Google Scholar 

  • Batzer, M. A., & Deininger, D. L. (2002). ALU repeats and human genomic diversity. Nature Reviews Genetics, 3, 370–380.

    PubMed  CAS  Google Scholar 

  • Bell, J. L. (2001). Viral Eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? Journal of Molecular Evolution, 53, 251–256.

    PubMed  CAS  Google Scholar 

  • Bell, P. J. L. (2006). Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. Journal of Theoretical Biology, 243, 54–63.

    PubMed  CAS  Google Scholar 

  • Blackburn, E. H. (2000). The end of the (DNA) line. Nature Structural Biology, 7, 847–850.

    PubMed  CAS  Google Scholar 

  • Blackburn, E. H. (2006). Telomerase RNA. In R. F. Gesteland, T. R. Cech, & J. F. Atkins (Eds.), The RNAWorld, third ed (pp. 419–436). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Brier, S. (2008). Cybersemiotics: Why information is not enough. Toronto: Toronto University Press.

    Google Scholar 

  • Brosius, J. (1999). RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene, 238, 115–134.

    PubMed  CAS  Google Scholar 

  • Brüssow, H. (2007). The quest for food. A natural history of eating. New York: Springer Science and Business Media.

    Google Scholar 

  • Cech, T. R., Moras, D., Nagai, K., & Williamson, J. R. (2006). The RNP world. In R. F. Gesteland, T. R. Cech, & J. F. Atkins (Eds.), The RNAWorld, third ed (pp. 309–326). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Chen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Review Genetics, 8, 93–103.

    CAS  Google Scholar 

  • Chomsky, N. (1964). Current Issues in linguistic theory. London: The Hague, Mouton.

    Google Scholar 

  • Chomsky, N. (1972). Studies on semantics in generative grammar. The Hague: Mouton.

    Google Scholar 

  • Chomsky, N. (2004). Biolinguistics and the human capacity. Delivered at MTA, Budapest, May 17, 2004.

  • Cristianini, N., & Hahn, M. (2006). Introduction to computational genomics. New York: Cambridge University Press.

    Google Scholar 

  • Chu, C. Y., & Rana, T. M. (2007). Small RNAs: regulators and guardians of the genome. Journal of Cell Physiology, 213, 412–419.

    CAS  Google Scholar 

  • Demongeot, J., Glade, N., Moreira, A., & Vial, L. (2009). RNA relics and origin of life. International Journal of Molecular Science, 10, 3420–3441.

    CAS  Google Scholar 

  • Dieci, G., Preti, M., & Montanini, B. (2009). Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics, 94, 83–88.

    PubMed  CAS  Google Scholar 

  • Doench, J. G., Petersen, C. P., & Sharp, P. A. (2003). siRNAs can function as miRNAs. Genes & Development, 17, 438–442.

    CAS  Google Scholar 

  • Domingo, E., Parrish, C. R., & Holland, J. J. (2008). Origin and evolution of viruses (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Dupressoir, A., Marceau, G., Vernochet, C., Benit, L., Kanellopoulos, C., Sapin, V., et al. (2005). Syncytin-A and syncytin_B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proceedings of the National Academy of Sciences of the United States of America, 102, 725–730.

    PubMed  CAS  Google Scholar 

  • Dymond, J. S., Scheifele, L. Z., Richardson, S., Lee, P., Chandrasegaran, S., Bader, J. S., et al. (2009). Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course. Genetics, 181, 13–21.

    PubMed  CAS  Google Scholar 

  • Eigen, M., & Winkler, R. (1975). Das Spiel. Naturgesetze steuern den Zufall. München: Pieper.

    Google Scholar 

  • Farazi, T. A., Juranek, S. A., & Tuschl, T. (2008). The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development, 135, 1201–1214.

    PubMed  CAS  Google Scholar 

  • Favareau. D, (2010) (Ed). Essential readings in biosemiotics. Dortrecht: Springer.

  • Filipowicz, W. (2000). Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proceedings of the National Academy of Sciences of the United States of America, 97, 14035–14037.

    PubMed  CAS  Google Scholar 

  • Forterre, P. (2001). Genomics and early cellular evolution. The origin of the DNA world. Comptes rendus de l’Académie des sciences. Série 3. Sciences de la vie, 324, 1067–1076.

    PubMed  CAS  Google Scholar 

  • Forterre, P. (2002). The origin of DNA genomes and DNA replication proteins. Current Opinion in Microbiology, 5, 525–532.

    PubMed  CAS  Google Scholar 

  • Forterre, P. (2005). The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie, 87, 793–803.

    PubMed  CAS  Google Scholar 

  • Forterre, P. (2006). The origin of viruses and their possible roles in major evolutionary transitions. Virus Research, 117, 5–16.

    PubMed  CAS  Google Scholar 

  • Forterre, P. (2010) Manipulation of cellular syntheses and the nature of viruses: The virocell concept. Comptes Rendus Chimie (in press).

  • Forterre, P., & Prangishvili, D. (2009). The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Annals of the New York Academy of Sciences, 1178, 65–77.

    PubMed  CAS  Google Scholar 

  • Gimenez, J., Montgiraud, C., Oriol, G., Pichon, J. P., Ruel, K., Tsatsaris, V., et al. (2009). Comparative Methylation of ERVWE1/Syncytin-1 and other human endogenous retrovirus LTRs in placenta tissues. DNA Research, 16, 195–211.

    PubMed  CAS  Google Scholar 

  • Gott, J. M. (2003). Expanding genome capacity via RNA editing. CR Biology, 326, 901–908.

    CAS  Google Scholar 

  • Gott, J. M., & Rhee, A. C. (2008). Insertion/deletion editing in physarum polycephalum. In H. U. Göringer (Ed.), RNA Editing (pp. 85–104). Berlin: Springer Verlag.

    Google Scholar 

  • Grosjean, H., & Bjork, G. R. (2004). Enzymatic conversion of cytidine to lysidine in anticodon of bacterial isoleucyl-tRNA–an alternative way of RNA editing. Trends in Biochemical Sciences, 29, 165–168.

    PubMed  CAS  Google Scholar 

  • Hamann, C., & Westhof, E. (2007). Searching genomes for ribozymes and riboswitches. Genome Biology, 8, 210. doi:10.1186/gb-2007-8-4-210.

    Google Scholar 

  • Hoffmeyer, J. (1996). Signs of meaning in the Universe. Bloomington: Indiana University Press.

    Google Scholar 

  • Homann, M. (2008). Editing reactions from the perspective of RNA structure. In H. U. Göringer (Ed.), RNA editing (pp. 1–32). Berlin: Springer Verlag.

    Google Scholar 

  • Hudson, Q. J., Kulinski, T. M., Huetter, S. P., & Barlow, D. P. (2010). Genomic Imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity, 1, 45–56.

    Google Scholar 

  • Jalasvuori, M. (2010). Viruses are ancient parasites that have influenced the evolution of contemporary and archaic forms of life. Jyväskylä: University Printing House.

    Google Scholar 

  • Ji, S. (1997). Isomorphism between cell and human languages: molecular biological, bioinformatic and linguistic implications. Biosystems, 44, 17–39.

    PubMed  CAS  Google Scholar 

  • Ji, S. (1999). The linguistics of DNA: words, sentences, grammar, phonetics and semantics. Annals of the New York Academy of Sciences of the USA, 870, 411–417.

    CAS  Google Scholar 

  • Jurka, J., Kapitonov, V. V., Kohany, O., & Jurka, M. V. (2007). Repetitive sequences in complex genomes: structure and evolution. Annual Review of Genomics and Human Genetics, 8, 241–259.

    PubMed  CAS  Google Scholar 

  • Keedwell, E. (2005). Intelligent bioinformatics: The application of artificial intelligence techniques to bioinformatics problems. Chichester: Wiley.

    Google Scholar 

  • Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology, 6, 376–385.

    PubMed  CAS  Google Scholar 

  • Koonin, E. V. (2009). On the origin of cells and viruses: primordial virus world scenario. Annals of the New York Academy of Sciences of the USA, 1178, 47–64.

    CAS  Google Scholar 

  • Koonin, E. V., Senkevich, T. G., & Dolja, V. V. (2006). The ancient virus world and evolution of cells. Biology Direct, 1, 29.

    PubMed  Google Scholar 

  • Krull, M., Brosius, J., & Schmitz, J. (2005). Alu-SINE exonization: en route to protein-coding function. Molecular Biology and Evolution, 22, 1702–1711.

    PubMed  CAS  Google Scholar 

  • Kull, K., Deacon, T., Emmeche, C., Hoffmeyer, J., & Stjernfelt, F. (2009). Thesis an biosemiotics: prolegomena to a theoretical biology. Biological Theory, 4, 167–173.

    Google Scholar 

  • Lisch, D. (2008). Epigenetic regulation of transposable elements in plants. Annual Review of Plant Biology, 60, 43–66.

    Google Scholar 

  • Mallet, F., Bouton, O., Prudhomme, S., Cheynet, V., Oriol, G., Bonnaud, B., et al. (2004). The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proceedings of the National Academy of Sciences of the United States of America, 101, 1731–1736.

    PubMed  CAS  Google Scholar 

  • Margulis, L. (2004). Serial endosymbiotic theory (SET) and composite individuality. Transition from bacterial to eukaryotic genomes. Microbiol Today, 31, 173–174.

    Google Scholar 

  • Margulis, L., & Sagan, D. (2002). Acquiring genomes. A theory of the origin of species. New York: Basic Books.

    Google Scholar 

  • Markos, A. (2002). Readers of the book of life. Oxford: Oxford University Press.

    Google Scholar 

  • Matera, A. G., Terns, R. M., & Terns, M. P. (2007). Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Reviews. Molecular Cell Biology, 8, 209–220.

    PubMed  CAS  Google Scholar 

  • Mattick, J., & Gagen, M. J. (2001). The evolution of controlled multitasked gene net-works: the role of introns and other noncoding RNAs in the development of complex organisms. Molecular Biology and Evolution, 18, 1611–1630.

    PubMed  CAS  Google Scholar 

  • Melderen, L. V., & Saavedra De Bast, M. (2009). Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genetics, 5, e1000437. doi:10.1371/journal.pgen.1000437.

    PubMed  Google Scholar 

  • Matlin, A. J., & Moore, M. J. (2007). Spliceosome assembly and composition. Advances in Experimental Medicine and Biology, 623, 14–35.

    PubMed  Google Scholar 

  • Moore, P. B., & Steitz, T. A. (2006). The roles of RNA in the synthesis of protein. In R. F. Gesteland, T. R. Cech, & J. F. Atkins (Eds.), The RNAWorld, third ed (pp. 257–285). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Morris, C. W. (1938). Foundations of the theory of signs. Chicago: University Press.

    Google Scholar 

  • Morris, C. W. (1946). Signs, language, and behavior. New York: Braziller.

    Google Scholar 

  • Mueller, S., Coleman, J. R., & Wimmer, E. (2009). Putting synthesis into biology—a viral view of genetic engineering through de novo gene and genome synthesis. Chemical Biology, 16, 337–347.

    CAS  Google Scholar 

  • Noller, H. F. (2006). Evolution of ribosomes and translation. In R. F. Gesteland, T. R. Cech, & J. F. Atkins (Eds.), The RNAWorld, third ed (pp. 287–307). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Odintsova, M. S., & Yurina, N. P. (2000). RNA editing in plant chlorplasts and mitochondria. Fisiologia Rastenij, 37, 307–320.

    Google Scholar 

  • Odintsova, M. S., & Yurina, N. P. (2005). Genomics and evolution of cellular organelles. Russian Journal of Genetics, 41, 957–967.

    CAS  Google Scholar 

  • O’Donnell, K.A., & Burns, K.H. (2010). Mobilizing diversity: transposable element insertions in genetic variation and disease. Mobile DNA 1:21. http://www.mobilednajournal.com/content/1/1/21

  • Panigrahi, A. K., Schnaufer, A., Ernst, N. L., Wang, B., Carmean, N., Salavati, R., et al. (2003). Identification of novel components of Trypanosoma brucei editosomes. RNA, 9, 484–492.

    PubMed  CAS  Google Scholar 

  • Piriyapongsa, J., Marino-Ramirez, L., & King Jordan, I. (2007). Origin and evolution of human micro RNAs from transposable elements. Genetics, 176, 1323–1337.

    PubMed  CAS  Google Scholar 

  • Piryapongsa, J., & King Jordan, I. (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 14, 814–821.

    Google Scholar 

  • Popov, O., Degal, D. M., & Trifonov, E. N. (1996). Linguistic complexity of protein sequences as compared to texts of human languages. Biosystems, 38, 65–74.

    PubMed  CAS  Google Scholar 

  • Prudhomme, S., Bonnaud, B., & Mallet, F. (2005). Endogenous Retroviruses and animal reproduction. Cytogenetics and Genome Research, 110, 353–364.

    PubMed  CAS  Google Scholar 

  • Pyle, A. M., & Lambowitz, A. M. (2006). Group II introns: Ribozymes that splice RNA and invade DNA. In R. F. Gesteland, T. R. Cech, & J. F. Atkins (Eds.), The RNAWorld, third ed (pp. 468–506). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Roossinck, M. (2005). Symbiosis versus competition in plant virus evolution. Nature Reviews Microbiology, 3, 917–924.

    Google Scholar 

  • Ryan, F. P. (2004). Human endogenous retroviruses in health and disease: a symbiotic perspective. Journal of the Royal Society of Medicine, 97, 560–565.

    PubMed  Google Scholar 

  • Ryan, F. P. (2006). Genomic creativity and natural selection. A modern synthesis. Biological Journal of the Linnean Society, 88, 655–672.

    Google Scholar 

  • Ryan, F. P. (2009). Virolution. London: Collins.

    Google Scholar 

  • Sciamanna, I., Vitulloa, P., Curatoloa, A., & Spadafora, C. (2009). Retrotransposons, reverse transcriptase and the genesis of new genetic information. Gene, 448, 180–186.

    PubMed  CAS  Google Scholar 

  • Searls, D. B. (2002). The language of genes. Nature, 420, 211–217.

    PubMed  CAS  Google Scholar 

  • Sebeok, T., & Umiker-Sebeok, J. (1992). Biosemiotics: The semiotic web 1991. Berlin: Mouton de Gruyter.

    Google Scholar 

  • Serrano, L. (2007). Synthetic biology: promises and challenges. Molecular Systems Biology, 3, 158–163.

    PubMed  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Schumann, G. G. (2007). APOPEC3 proteins: major players in intracellular defence against LINE-1 mediated retrotransposition. Biochemistry Society Transactions, 35, 637–642.

    CAS  Google Scholar 

  • Shapiro, J. A., & Sternberg, R. (2005). Why repetitive DNA is essential to genome function. Biological Reviews, 80, 1–24.

    Google Scholar 

  • Slotkin, R. K., & Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Review Genetics, 8, 272–285.

    CAS  Google Scholar 

  • Smith, H. C. (2008). Editing informational content of expressed DNA sequences and their transcripts. In H. U. Göringer (Ed.), RNA editing (pp. 249–265). Berlin: Springer Verlag.

    Google Scholar 

  • Sternberg, R., & Shapiro, J. A. (2005). How repeated retroelements format genome function. Cytogenet Genome Research, 110, 108–116.

    Google Scholar 

  • Suttle, C. A. (2007). Marine viruses – major players in the global ecosystem. Nature Reviews. Microbiology, 5, 801812.

    Google Scholar 

  • Taft, R. J., Glazov, E. A., Lassmann, T., Hayashizaki, Y., Carninci, P., & Mattick, J. S. (2009). Small RNAs derived from snoRNAs. RNA, 15, 1233–1240.

    PubMed  CAS  Google Scholar 

  • Takemura, M. (2001). Poxviruses and the origin of the eukaryotic nucleus. Journal of Molecular Evolution, 52, 419–425.

    PubMed  CAS  Google Scholar 

  • Takenaka, M., Van Der Merwe, J. A., Verbitskiy, D., Neuwirt, J., Zehrmann, A., & Brennicke, A. (2008). RNA editing in plant mitochondria. In H. U. Göringer (Ed.), RNA editing (pp. 105–122). Berlin: Springer Verlag.

    Google Scholar 

  • Turing, A. (1950). Computing machinery and intelligence. Mind, 59, 433–460.

    Google Scholar 

  • Toor, N., Hausner, G., & Zimmerly, S. (2001). Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases RNA 7, 1142–1152

  • Villarreal, L. P. (2004). Can viruses make us humans? Proceedings. American Philosophical Society, 148, 296–323.

    Google Scholar 

  • Villarreal, L. P. (2005). Viruses and the evolution of life. Washington: American Society for Microbiology Press.

    Google Scholar 

  • Villarreal, L. P. (2007). Virus-host symbiosis mediated by persistence. Symbiosis, 44, 1–9.

    CAS  Google Scholar 

  • Villarreal, L. P. (2009a). Origin of group identity: Viruses, addiction and cooperation. New York: Springer Science and Business Media.

    Google Scholar 

  • Villarreal, L. P. (2009b). The source of self. Genetic parasites and the origin of adaptive immunity. Annals of the New York Academy of Sciences, 1178, 194–232.

    PubMed  CAS  Google Scholar 

  • Villarreal, L. P., & DeFilippis, V. R. (2000). A hypothesis for DNA viruses as the origin of eu-karyotic replication proteins. Journal of Virology, 74, 7079–7084.

    PubMed  CAS  Google Scholar 

  • Villarreal, L. P., & Witzany, G. (2010). Viruses are essential agents within the roots and stem of the tree of life. Journal of Theoretical Biology, 262, 698–710.

    PubMed  Google Scholar 

  • Weiner, A. M. (2006). SINEs and LINEs: Troublemakers, saboteurs, benefactors, ancestors. In R. F. Gesteland, T. R. Cech, & J. F. Atkins (Eds.), The RNAWorld, third ed (pp. 507–534). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Wessler, S. (2006). Eukaryotic transposable elements: teaching old genomes new tricks. In L. Caporale (Ed.), The implicit genome (pp. 139–162). New York: Oxford University Press.

    Google Scholar 

  • Witzany, G. (1995). From the “logic of the molecular syntax” to molecular pragmatism, explanatory deficits in Manfred Eigen’s concept of language and communication. Evolution and Cognition, 1, 148–168.

    Google Scholar 

  • Witzany, G. (2000). Life: The communicative structure. Norderstedt: Libri Books on Demand.

    Google Scholar 

  • Witzany, G. (2007). The logos of the bios 2. Bio-communication. Helsinki: Umweb.

    Google Scholar 

  • Witzany, G. (2008). The viral origins of telomeres, telomerases and their important role in eukaryogenesis and genome maintenance. Biosemiotics, 2, 191–206.

    Google Scholar 

  • Witzany, G. (2009a) (ed). Natural genetic engineering and natural genome editing. Annals of the New York Academy of Sciences, Volume 1178.

  • Witzany, G. (2009b). Non-coding RNAs: persistent viral agents as modular tools for cellular needs. Annals of the New York Academy of Sciences, 1178, 244–267.

    PubMed  CAS  Google Scholar 

  • Witzany, G. (2010). Biocommunication and natural genome editing. Dordrecht: Springer.

    Google Scholar 

  • Wittgenstein, L. (1975). Philosophische Untersuchungen. Frankfurt: Suhrkamp.

    Google Scholar 

  • Yazgan, O., & Krebs, J. E. (2007). Noncoding but nonexpendable: transcriptional regulation by large noncoding RNA in eukaryotes. Biochemistry and Cell Biology, 85, 484–496.

    PubMed  CAS  Google Scholar 

  • Zhang, H. Y. (2006). The evolution of genomes and language. EMBO Reports, 7, 748–749.

    PubMed  CAS  Google Scholar 

  • Zuckerkandl, E. (2002). Why so many noncoding nucleotides? The eukaryote genome as an epigenetic machine. Genetica, 115, 105–129.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author wants to thank Luis P. Villarreal, Director of Virus Research, Irvine, California for interesting comments and anonymous reviewer for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Witzany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witzany, G. Natural Genome Editing from a Biocommunicative Perspective. Biosemiotics 4, 349–368 (2011). https://doi.org/10.1007/s12304-011-9111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-011-9111-7

Keywords

Navigation