Skip to main content
Log in

The Hypothesis of a Genetic Protolanguage: an Epistemological Investigation

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Progress in molecular biology has revealed profound relations between linguistic and genomic sciences, mainly through advances in bioinformatics. The structural symmetries between biochemical and verbal syntaxes raise the question of their origins: did they emerge independently, or did one arise from the other? Does the genetic code contain the traces of a protolanguage, a universal grammar whose gradual evolution and successive mutations progressively led to the polymorphism of natural languages? To explore this question, we review the isomorphism of the genetic code and verbal codes from lexical, syntactic, semantic and pragmatic standpoints. We discuss the limits of these symmetries and their anthropomorphic connotations. We observe the gradual evolution of species and languages according to parallel mechanisms, and the genetic roots of the physiology of language. In conclusion, we hypothesize that human observers may not be projecting linguistic frameworks onto genomic structures. Rather, it could be their linguistic faculties that reflect the grammatical structure of genetic code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, L., & Trevors, T. (2006). More than metaphor: Genomes are objective sign systems. Journal of Biosemiotics, 1(2), 253–267.

    Google Scholar 

  • Aitchison, J. (1999). Linguistics. Chicago: NTC/Contemporary Publishing.

    Google Scholar 

  • Arbib, M. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics, Behavioral and Brain Sciences, 28, 105–167.

    Article  PubMed  Google Scholar 

  • Atlan, H. (1999). Vers de nouveaux paradigmes en biologie. Paris: Inra.

    Google Scholar 

  • Atlan, H. (1972). L’Organisation biologique et la Théorie de l’information. Paris: Hermann.

    Google Scholar 

  • Baldi, P., Brunak, S. (2001). Bioinformatics: The machine learning approach. Cambridge, MA: MIT Press.

    Google Scholar 

  • Barnbrook, G. (1996). Language and computers. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Barbrook, A., Howe, C. J., Blake, N., & Robinson, P. (1998). The phylogeny of the Canterbury Tales. Nature, 394, 839.

    Article  CAS  Google Scholar 

  • Barbieri, M. (2007). Introduction to biosemiotics. Berlin: Springer.

    Google Scholar 

  • Bastide, F. (1985). Linguistique et génétique, Actes Sémiotiques, 33.

  • Berkeley, G. (1710). A treatise concerning the principles of human knowledge. In J. Dancy (Ed.), Oxford: Philosophical Texts.

  • Benichou, G. (2002). Le Chiffre de la vie: réconcilier la génétique et l’humanisme. Paris: Seuil.

    Google Scholar 

  • Bickerton, D. (1990). Language and species. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Bickerton, D. (1995). Language and human behaviour. London: University College London Press.

    Google Scholar 

  • Bickerton, D. (1998). Catastrophic evolution: The case for a single step from protolanguage to full human language. In J. R. Hurford, M. Studdert-Kennedy & C. Knight (Eds.), Approaches to the evolution of language: social and cognitive bases (pp. 341–358). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bickerton, D. (2003). Symbol and structure: A comprehensive framework for language evolution. In M. H. Christiansen & S. Kirby (Eds.), Language evolution (pp. 77–93). Oxford: Oxford University Press.

    Google Scholar 

  • Bowie, J. (2006). The evolution of meaningful combinatoriality. Evolution of Language, 6th International Conference, Rome 12–15 April, 2006.

  • Broca, P. (1875). Instructions craniologiques et craniométriques. Paris: Masson.

    Google Scholar 

  • Campbell, L. (1999). Historical linguistics: An introduction. Cambridge, MA: MIT Press.

    Google Scholar 

  • Carrier, R. C. (2005). The argument from biogenesis: Probabilities against a natural origin of life. Biology & Philosophy, 19(5), 739–764.

    Article  Google Scholar 

  • Cavalli-Sforza, L. L. (2000). Genes, peoples and languages. New York: North Point Press.

    Google Scholar 

  • Cavalli-Sforza, L. L. (1988). Reconstruction of human evolution: Bringing together genetic, archaeological, and linguistic data. Proceedings of the National Academy of Sciences, 85, 6002–6.

    Article  CAS  Google Scholar 

  • Chomsky, N. (2001). New horizons in the study of language and mind. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36(1), 1–22.

    Article  Google Scholar 

  • Chomsky, N. (1995). The minimalist program. Cambridge (MA): MIT Press.

    Google Scholar 

  • Chomsky, N. (2004). Beyond explanatory adequacy. In A. Belletti (Ed.), The cartography of syntactic structures, vol. 3, Structures and beyond. Oxford: Oxford University Press.

    Google Scholar 

  • Chomsky, N. (2003). On nature and language. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chomsky, N. (1957). Syntactic structures.The Hague: Mouton.

    Google Scholar 

  • Chomsky, N., Miller, G. (1963). Introduction to the formal analysis of natural languages, in Handbook of Mathematical Psychology. New York: Wiley.

    Google Scholar 

  • Chomsky, N. (1972). Language and mind. New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Danchin, A. (2002). The Delphic boat: What genomes tell us. MA: Harvard University Press.

    Google Scholar 

  • Darwin, C. (1871). The descent of man. New Jersey: Princeton University Press.

    Google Scholar 

  • Darwin, C. (1872). The origin of species. PA: University of Pennsylvania Press (1959).

    Google Scholar 

  • Davidson, I. (2003). The archeological evidence of language origins: States of art. In M. Christiansen, & S. Kirby (Eds.), Language evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Dessalles, J.-L. (2006). From protolanguage to language: model of transitionMarges linguistiques, 11, 142–152.

    Google Scholar 

  • Durbin, R., Krogh, A., Mitchison, G., & Eddy, S. (1988). Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fire, A., Xu, S. Q., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W. T. (2005). The evolution of language: A comparative review. Biology & Philosophy,20(2–3), 193–203.

    Article  Google Scholar 

  • Fire, A., Mello, C. C., & Nobel Lecture (2006). October 2, Karolinska Institutet, Stockholm.

  • Fox-Keller, E. (1995). Refiguring life: Changing metaphors in twentieth-century biology. New York: Columbia University Press.

    Google Scholar 

  • Harrison, P. M., & Gerstein, M. (2002). Studying genomes through the aeons, protein families, pseudogenes and proteome evolution.Journal of Molecular biology, 318, 1155–1174.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 1569–1579.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, M. D. (1996). The evolution of communication. Cambridge, MA: MIT Press.

    Google Scholar 

  • Head, T. (1987). Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviours. Bulletin of mathematical biology, 49, 737–759.

    PubMed  CAS  Google Scholar 

  • Hoyle, D. C., Rattray, M., Jupp, R., & Brass, A. (2002). Making sense of microarray data distributions. Bioinformatics, 18, 576–584.

    Article  PubMed  CAS  Google Scholar 

  • Huynen, M. A., & van Nimwegen, E. (1998). The frequency distribution of gene family sizes in complete genomes. Molecular biology and evolution, 15, 583–589.

    PubMed  CAS  Google Scholar 

  • Jacob, F. (1965). Leçon inaugurale au Collège de France. Paris: Collège de France archives.

    Google Scholar 

  • Jacob, F. (1966). Genetics of the bacterial cell. Science, 150, 1464–1470.

    Google Scholar 

  • Jacob, F. (1970). La Logique du vivant. Paris: Gallimard.

    Google Scholar 

  • Jacob, F. (1971a). The logic of life, Princeton Science Library.

  • Jacob, F. (1971b). Le modèle linguistique en biologie, Nouvelle Critique, Paris, Octobre.

  • Jacob, F. (1974). Le modèle linguistique en biologie, Critique, Paris, Éd. de Minuit, 320.

  • Jackendoff, R. (2002). Foundations of language: Brain, meaning, grammar, evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Jakobson, R. (1968). Vivre et parler, Les Lettres françaises, n° 1221.

  • Jakobson, R. (1973). La linguistique et les sciences naturelles, Essais de linguistique générale, Paris, Éd. de Minuit.

  • Jakobson, R. (1974). Vie et langage, Dialectiques, Paris, Presses Universitaires de France, no 7.

  • Jerne, N. (1984). The generative grammar of the immune system. Nobel Lecture, Dec 8, 1984.

  • Johansson, S. (2005). Origins of Language—Constraints on hypotheses. Amsterdam: Benjamins.

    Google Scholar 

  • Jurafsky, D., & Martin, J. H. (2000). Speech and language processing. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Kay L. (2000) Who wrote the book of life: A history of the genetic codeCA Stanford University Press

    Google Scholar 

  • Keenan, E., & Stabler, E. (2003). Linguistic invariants and language variation. 12th International Congress. Logic Methodology and Philosophy of Science, LMPS’03, Oviedo, Spain, August 7–13, 2003.

  • Kevles, D., & Hood, L. (1992). The code of codes: Scientific and social issues in the human genome project. Cambridge: Harvard University Press.

    Google Scholar 

  • Kjosavik, F. (2006). From symbolism to information? Decoding the gene code.Biology & Philosophy, 22(3), 333–349.

    Article  Google Scholar 

  • Lenneberg, E. (1967). Biological foundations of language. New York: Wiley.

    Google Scholar 

  • Lévi-Strauss, C. (1968). Vivre et parler, Les Lettres françaises, no 1221.

  • Lévi-Strauss, C. (1971). L’Homme nu. Paris: Plon.

    Google Scholar 

  • Lewontin, R. (1974). The genetic basis of evolutionary change. NY: Columbia University Press.

    Google Scholar 

  • Lieberman, P. (1984). The biology and evolution of language. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lin, J., & Gerstein, M. (2000). Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Research, 10, 808–818.

    Article  PubMed  CAS  Google Scholar 

  • Lyngso, R. (2000). RNA pseudoknot prediction in energy-based models. Journal of Ccomputational Biology, 7, 409–427.

    Article  CAS  Google Scholar 

  • Mandelbrot, B. (1983). The fractal geometry of nature. San Francisco: Freeman.

    Google Scholar 

  • Mantegna, R. N., et al. (1994). Linguistic features of noncoding DNA sequences. Physical Review Letters, 73, 3169–3172.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, E. (1966). Animal species and evolution. Cambridge: Massachusetts.

    Google Scholar 

  • Mayr, E. (1961). Cause and effect in biology. Science, 134, 1504–1506.

    Google Scholar 

  • Monod, J. (1970). Le Hasard et la Nécessité, Paris, Éd. du Seuil.

  • Monod, J. (1974). L’Unité de l’homme, Colloque de Royaumont. Paris: Seuil.

    Google Scholar 

  • Mushegian, A. (1999). The minimal genome concept. Current Opinion in Genetics & Development, 9, 709–714.

    Article  CAS  Google Scholar 

  • Pennock, R. T. (1999). Tower of Babel: The evidence against the New Creationism. Cambridge, MA: Bradford MIT Press.

    Google Scholar 

  • Pittendrigh, C. (1958). Behavior and evolution. New Haven, Connecticut: Yale University Press.

    Google Scholar 

  • Platnick, N. I., & Cameron, H. D. (1977). Cladistic methods in textual, linguistic and phylogenetic analysis. Systematic Zoology, 26, 380–385.

    Article  Google Scholar 

  • Qian, J., Luscombe, N. M., & Gerstein, M. (2001) Protein family and fold occurrence in genomes: Power-law behaviour and evolutionary model. Journal of Molecular Biology, 313, 673–681.

    Article  PubMed  CAS  Google Scholar 

  • Rivas, E., & Eddy, S. (2000) The language of RNA: A formal grammar that includes pseudoknots. Bioinformatics, 16, 334–340.

    Article  PubMed  Google Scholar 

  • Ruhlen, M. (1994). On the origin of languages: Studies in linguistic taxonomy. CA: Stanford University Press.

    Google Scholar 

  • Saussure Ferdinand, (de), (1908). Cours de linguistique générale, Paris, Payot, 1972.

  • Schurz J. (2007) Probability and evolution. Why the probability argument of Creationists is wrong. Journal for General Philosophy of Science, 38(1), 163–165.

    Article  Google Scholar 

  • Schuster, P., Fontana, W., Stadler, P. F., & Hofacker, I. L. (1994). From sequences to shapes and back: A case study in RNA secondary structures. Proceedings of the Royal Society of London, B255, 279–284.

    Article  Google Scholar 

  • Searls, D. (2002). The language of genes.Nature, 420, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Searls, D. (2001). Reading the book of life. Bioinformatics, 17, 579–580.

    Article  PubMed  CAS  Google Scholar 

  • Searls, D. (2001). Mining the bibliome. Pharmacogenomics journal, 1, 88–89.

    PubMed  CAS  Google Scholar 

  • Searls, D. (2001). From Jabberwocky to genome: Lewis Carroll and computational biology. Journal of Comparative Biology, 8, 339–348.

    Article  CAS  Google Scholar 

  • Searls, D. (1999). Mathematical support of molecular biology. (117–140). Providence, RI: American Mathematical Society (edited by F.-C. Roberts, & V. Waterman).

    Google Scholar 

  • Searls, D. (1995). String variable grammar: A logic grammar formalism for DNA sequence. J. Logic Program, 24, 73–102.

    Article  Google Scholar 

  • Searls, D. (1993). Artificial intelligence and molecular biology, Ch. 2. (pp. 47–120). Menlo Park, CA: AAAI Press (edited by L. Hunter).

    Google Scholar 

  • Searls D. (1992). The linguistics of DNA. American Scientist, 80, 579–591.

    Google Scholar 

  • Searls, D. (1989). Logic programming. Proceedings of the North American Conference. (pp. 189–208). Cambridge, MA: MIT Press (edited by E. Lusk, R. Overbeek).

  • Searls, D. (1988). Proceedings of the 7th National Conference on Artificial Intelligence. (pp. 386–391). Menlo Park, CA: AAAI Press.

  • Segre’ (2000). Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proceedings of the National Academy of Sciences of the United States of America, 97, 4112–4117.

    Article  CAS  Google Scholar 

  • Segre’ (2002). Language, genes and the evolution of combinatorics. Evolution of Language: 4th International Conference, Harvard University.

  • Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Shea N. (2006). Representation in the genome and in other inheritance systems.Biology & Philosophy, 22(3), 313–331.

    Article  Google Scholar 

  • Smith, K. (2006). The protolanguage debate: Bbridging the gap? In A. Cangelosi, A. D. M. Smith & K. Smith (Eds.), The evolution of language. Proceedings of the 6th International Conference, (pp. 315–322).

  • Snel, B.B., Bork, P., & Huynen, M. A. (2000). Genome phylogeny based on gene content. Nature Genetics, 21, 108–110.

    Article  CAS  Google Scholar 

  • Stegmann, U. E. (2004). The arbitrariness of the genetic code. Biology & Philosophy, 19(2), 205–222.

    Article  Google Scholar 

  • Tallerman, M. (2007). Did our ancestors speak a holistic protolanguage. Lingua, 117(3), 579–604.

    Article  Google Scholar 

  • Tatusov, R. L., Galperin, M. Y., Natale, D. A., & Koonin, E. V. (2000). The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 28, 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Tekaia, F., Lazcano, A., & Dujon, B. (1999). The genomic tree as revealed from the whole proteome comparisons. Genome Research, 9, 550–557.

    Google Scholar 

  • Trubetskoy, N. (1936). Die phonologischen Grenzsignale. Proceedings of the 2nd International Congress of Phonetic Sciences, Cambridge, 1936.

  • Uemura, Y., Hasegawa, A., Kobayashi, S., & Yokomori, T. (1999). Tree-adjoining grammars for RNA structure prediction. Theoretical computer science, 10, 277–303.

    Article  Google Scholar 

  • Wray, A. (1998). Protolanguage as a holistic system for social interaction. Language and Communication, 18, 47–67.

    Article  Google Scholar 

  • Yandell, M. D., & Majoros, W. H. (2002). Genomics and natural language processing. Nature Reviews. Genetics, 3, 601–610.

    Article  PubMed  CAS  Google Scholar 

  • Zipf, G. K. (1949). Human behavior and the principle of least effort. Boston, MA: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Katz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, G. The Hypothesis of a Genetic Protolanguage: an Epistemological Investigation. Biosemiotics 1, 57–73 (2008). https://doi.org/10.1007/s12304-008-9005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-008-9005-5

Keywords

Navigation