Skip to main content
Log in

Effect of pre-existing faults on the distribution of lower crust exhumation under extension: numerical modelling and implications for NW Ghana

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

3D thermo-mechanical models have been constructed to explore the influence of pre-existing faults on the temporal-spatial distribution of high-grade amphibolite-granulite facies metamorphic rocks during extension. The different dip amounts of three pre-existing faults (refer to the Bole-Nangodi shear zones, the Jirapa shear zone and the Bulenga shear zone in the study area) are studied in models. The results show the lower crust exhumes occur at a relatively low rate prior to attaining a Stretching Factor = 4.2%. The partially molten lower crustal rocks tend to move (up to 20 km) towards the center of the model and focus exhumation in regions where pre-existing faults intersect. The high-strain corridors in models are used to understand the loci of exhumation in the Bole-Bulenga domain of NW Ghana. Accordingly, in the eastern and western parts of the high-grade rock corridors in NW Ghana, partially molten rocks exhumed from the lower into middle-upper crustal levels are interpreted to have been dominantly facilitated by the km-scale high-strain corridors. In the central part of the Bole-Bulenga domain, the high-grade rocks are interpreted to have been exhumed because of a coupling between two mechanisms: (1) The exhumation of partially molten rocks between the Jirapa and Bole-Nangodi faults increases in spatially due to the reduction in space from north to south. (2) The exhumation of lower partially molten rocks in the central part, as a result of inherited orthogonal (E-W) structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allibone, A., Teasdale, J., Cameron, G., Etheridge, M., Uttley, P., Soboh, A., and Lamb, E., 2002, Timing and structural controls on gold mineralization at the Bogoso gold mine, Ghana, West Africa. Economic Geology, 97, 949–969.

    Google Scholar 

  • Amponsah, P.O., Salvi, S., Béziat, D., Siebenaller, L., Baratoux, L., and Jessell, M.W., 2015, Geology and geochemistry of the shear-hosted Julie gold deposit, NW Ghana. Journal of African Earth Sciences, 112, 505–523.

    Google Scholar 

  • Baratoux, L., Metelka, V, Naba, S., Jessell, M.W., Grégoire, M., and Ganne, J., 2011, Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (∼2.2–2.0 Ga), western Burkina Faso. Pre-cambrian Research, 191, 18–45.

    Google Scholar 

  • Bellahsen, N. and Daniel, J.M., 2005, Fault reactivation control on normal fault growth: an experimental study. Journal of Structural Geology, 27, 769–780.

    Google Scholar 

  • Bertrand, A., Rosenberg, C., and Garcia, S., 2015, Fault slip analysis and late exhumation of the Tauern Window, Eastern Alps. Tectonophysics, 649, 1–17.

    Google Scholar 

  • Block, S., 2015, Evolution géodynamique du craton Ouest Africain au nord du Ghana. Ph.D. Thesis, Université Toulouse III-Paul Sabatier, Toulouse, 359 p.

    Google Scholar 

  • Block, S., Ganne, J., Baratoux, L., Zeh, A., Parra-Avila, L., Jessell, M., Ailleres, L., and Siebenaller, L., 2015, Petrological and geochronological constraints on lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton. Journal of Metamorphic Geology, 33, 463–494.

    Google Scholar 

  • Block, S., Jessell, M., Aillères, L., Baratoux, L., Bruguier, O., Zeh, A., Bosch, D., Caby, R., and Mensah, E., 2016, Lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton: interplay of coeval contractional deformation and extensional gravitational collapse. Precambrian Research, 274, 82–109.

    Google Scholar 

  • Boher, M., Abouchami, W., Michard, A., Albarede, F., and Arndt, N.T., 1992, Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research: Solid Earth, 97, 345–369. https://doi.org/10.1029/91JB01640

    Google Scholar 

  • Brun, J.P., Sokoutis, D., and Van Den Driessche, J., 1994, Analogue modeling of detachment fault systems and core complexes. Geology, 22, 319–322.

    Google Scholar 

  • Buiter, S.J. and Torsvik, T.H., 2007, Horizontal movements in the eastern Barents Sea constrained by numerical models and plate reconstructions. Geophysical Journal International, 171, 1376–1389.

    Google Scholar 

  • Burg, J.P., Bodinier, J.L., Gerya, T., Bedini, R.M., Boudier, F., Dautria, J.M., and Balanec, J.L., 2009, Translithospheric mantle diapirism: geological evidence and numerical modelling of the Kondyor zoned ultramafic complex (Russian Far-East). Journal of Petrology, 50, 289–321.

    Google Scholar 

  • Choi, E., Buck, W.R., Lavier, L.L., and Petersen, K.D., 2013, Using core complex geometry to constrain fault strength. Geophysical Research Letters, 40, 3863–3867.

    Google Scholar 

  • Collettini, C., Niemeijer, A., Viti, C., and Marone, C., 2009, Fault zone fabric and fault weakness. Nature, 462, 907–910.

    Google Scholar 

  • Coney, P.J., 1980, Cordilleran metamorphic core complexes: an overview. In: Crittenden, M.D. Jr., Coney, P.J., and Davis, G.H. (eds.), Cordilleran Metamorphic Core Complexes. Geological Society of America, Memoirs, 153, p. 7–31.

    Google Scholar 

  • D’Agostino, N., Chamot-Rooke, N., Funiciello, R., Jolivet, L., and Speranza, F., 1998, The role of pre-existing thrust faults and topography on the styles of extension in the Gran Sasso range (central Italy). Tectonophysics, 292, 229–254.

    Google Scholar 

  • Davis, D.W, Hirdes, W., Schaltegger, U., and Nunoo, E.A., 1994, U-Pb age constraints on deposition and provenance of Birimian and gold-bearing Tarkwaian sediments in Ghana, West Africa. Precambrian Research, 67, 89–107.

    Google Scholar 

  • Dasgupta, S. and Mukherjee, S., 2017, Brittle shear tectonics in a narrow continental rift: asymmetric non-volcanic Barmer basin (Rajasthan, India). The Journal of Geology, 125, 561–591.

    Google Scholar 

  • De Kock, G.S., Armstrong, R.A., Siegfried, H.P., and Thomas, E., 2011, Geochronology of the Birim Supergroup of the West African craton in the Wa-Bolé region of west-central Ghana: implications for the stratigraphic framework. Journal of African Earth Sciences, 59, 1–40.

    Google Scholar 

  • De Smet, J.H., Van Den Berg, A.P., and Vlaar, N.J., 1998, Stability and growth of continental shields in mantle convection models including recurrent melt production. Tectonophysics, 296, 15–29.

    Google Scholar 

  • Denèle, Y., Roques, D., Ganne, J., Chardon, D., Rousse, S., and Barbey, P., 2017, Strike-slip metamorphic core complexes: gneiss domes emplaced in releasing bends. Geology, 45, 903–906.

    Google Scholar 

  • Dioh, E., Béziat, D., Debat, P., Grégoire, M., and Ngom, P.M., 2006, Diversity of the Palaeoproterozoic granitoids of the Kédougou inlier (eastern Sénégal): petrographical and geochemical constraints. Journal of African Earth Science, 44, 351–371.

    Google Scholar 

  • Dooley, T.P. and Schreurs, G., 2012, Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results. Tectonophysics, 574, 1–71.

    Google Scholar 

  • Ellis, S., Schreurs, G., and Panien, M., 2004, Comparisons between analogue and numerical models of thrust wedge development. Journal of Structural Geology, 26, 1659–1675.

    Google Scholar 

  • Feng, X., 2016, Modélisation numérique des failles décrochantes et des effets de compression à grande échelle–Cas d’étude en Afrique de l’Ouest et Nouvelle Zélande. Ph.D. Thesis, Université Toulouse III-Paul Sabatier, Toulouse, 230 p.

    Google Scholar 

  • Feng, X., Amponsah, P.O., Martin, R., Ganne, J., and Jessell, M.W., 2016a, 3-D numerical modelling of the influence of pre-existing faults and boundary conditions on the distribution of deformation: example of North-Western Ghana. Precambrian Research, 274, 161–179.

    Google Scholar 

  • Feng, X., Wang, E., Ganne, J., Martin, R., and Jessell, M., 2018a, The exhumation along the Kenyase and Ketesso shear zones in the Sefwi terrane, West African Craton: a numerical study. Geosciences Journal. https://doi.org/10.1007/s12303-018-0057-5

    Google Scholar 

  • Feng, X., Wang, E., Ganne, J., Amponsah, P., and Martin, R., 2018b, Role of volcano-sedimentary basins in the formation of greenstone-granitoid belts in the West African craton: a numerical model. Minerals, 8, 73. https://doi.org/10.3390/min8020073

    Google Scholar 

  • Feng, X., Jessell, M.W., Amponsah, P.O., Martin, R., Ganne, J., Liu, D., and Batt, G., 2016b, Effect of strain-weakening on Oligocene-Miocene self-organization of the Australian-Pacific plate boundary fault in southern New Zealand: insight from numerical modelling. Journal of Geodynamics, 100, 130–143.

    Google Scholar 

  • Farrington, R.J., Moresi, L.N., and Capitanio, F.A., 2014, The role of viscoelasticity in subducting plates. Geochemistry, Geophysics, Geosystems, 15, 4291–4304.

    Google Scholar 

  • Feybesse, J.L., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J.L., Milesi, J.P., and Bouchot, V., 2006, The paleoproterozoic Ghanaian province: geodynamic model and ore controls, including regional stress modeling. Precambrian Research, 149, 149–196.

    Google Scholar 

  • Ganne, J. and Feng, X., 2017, Primary magmas and mantle temperatures through time. Geochemistry, Geophysics, Geosystems, 18, 872–888.

    Google Scholar 

  • Ganne, J. and Feng, X., 2018, Magmatism: a crustal and geodynamic perspective. Journal of Structural Geology, 114, 329–335.

    Google Scholar 

  • Ganne, J., Gerbault, M., and Block, S., 2014, Thermo-mechanical modeling of lower crust exhumation–Constraints from the metamorphic record of the Palaeoproterozoic Eburnean orogeny, West African Craton. Precambrian Research, 243, 88–109.

    Google Scholar 

  • Ganne, J., Feng, X., Rey, P., and De Andrade, V, 2016, Statistical petrology reveals a link between supercontinents cycle and mantle global climate. American Mineralogist, 101, 2768–2773.

    Google Scholar 

  • Ganne, J., De Andrade, V, Weinberg, R.F., Vidal, O., Dubacq, B., Kagambega, N., Naba, S., Baratoux, L., Jessell, M., and Allibon, J., 2012, Modern-style plate subduction preserved in the Palaeoproterozoic West African craton. Nature Geoscience, 5, 60–65.

    Google Scholar 

  • Gerya, T.V. and Yuen, D.A., 2003, Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth and Planetary Science Letters, 212, 47–62.

    Google Scholar 

  • Gerya, T.V., Perchuk, L.L., and Burg, J.P., 2008, Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts. Lithos, 103, 236–256.

    Google Scholar 

  • Gueydan, F., Précigout, J., and Montesi, L.G., 2014, Strain weakening enables continental plate tectonics. Tectonophysics, 631, 189–196.

    Google Scholar 

  • Hand, M. and Sandiford, M., 1999, Intraplate deformation in central Australia, the link between subsidence and fault reactivation. Tectonophysics, 305, 121–140.

    Google Scholar 

  • Huismans, R.S. and Beaumont, C., 2002, Asymmetric lithospheric extension: the role of frictional plastic strain softening inferred from numerical experiments. Geology, 30, 211–214.

    Google Scholar 

  • Imber, J., Tuckwell, G.W., Childs, C., Walsh, J.J., Manzocchi, T., Heath, A.E., Bonson, C.G., and Strand, J., 2004, Three-dimensional distinct element modelling of relay growth and breaching along normal faults. Journal of Structural Geology, 26, 1897–1911.

    Google Scholar 

  • Jessell, M.W. and Lister, G.S., 1991, Strain localization behaviour in experimental shear zones. Pure and Applied Geophysics, 137, 421–438.

    Google Scholar 

  • Jessell, M.W., Begg, G.C., and Miller, M.S., 2016, The geophysical signatures of the West African craton. Precambrian Research, 274, 3–24.

    Google Scholar 

  • Le Pourhiet, L., Burov, E., and Moretti, I., 2004, Rifting through a stack of inhomogeneous thrusts (the dipping pie concept). Tectonics, 23. https://doi.org/10.1029/2003TC001584

    Google Scholar 

  • Le Pourhiet, L., Huet, B., May, D.A., Labrousse, L., and Jolivet, L., 2012, Kinematic interpretation of the 3D shapes of metamorphic core complexes. Geochemistry, Geophysics, Geosystems, 13. https://doi.org/10.1029/2012GC004271

    Google Scholar 

  • Liao, J. and Gerya, T., 2014, Influence of lithospheric mantle stratification on craton extension: insight from two-dimensional thermo-mechanical modeling. Tectonophysics, 631, 50–64.

    Google Scholar 

  • Lister, G.S. and Davis, G.A., 1989, The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA. Journal of Structural Geology, 11, 65–94.

    Google Scholar 

  • Misra, A.A. and Mukherjee, S., 2015, Tectonic Inheritance in Continental Rifts and Passive Margins. Springer, Heidelberg, 88 p. https://doi.org/10.1007/978-3-319-20576-2

    Google Scholar 

  • Moresi, L., Dufour, F., and Mühlhaus, H.B., 2003, A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics, 184, 476–497.

    Google Scholar 

  • Moresi, L., Quenette, S., Lemiale, V., Meriaux, C., Appelbe, B., and Muhlhaus, H., 2007, Computational approaches to studying non-linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interior, 163, 69–82.

    Google Scholar 

  • Morley, C.K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A., and Wonganan, N., 2004, Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand. Journal of Structural Geology, 26, 1803–1829.

    Google Scholar 

  • Mulchrone, K.F. and Mukherjee, S., 2015, Shear senses and viscous dissipation of layered ductile simple shear zones. Pure and Applied Geophysics, 172, 2635–2642.

    Google Scholar 

  • Mukherjee, S., 2011, Estimating the viscosity of rock bodies–A comparison between the Hormuz- and the Namakdan Salt Domes in the Persian Gulf, and the Tso Morari Gneiss Dome in the Himalaya. The Journal of Indian Geophysical Union, 15, 161–170.

    Google Scholar 

  • Mukherjee, S., 2012, Simple shear is not so simple! Kinematics and shear senses in Newtonian viscous simple shear zones. Geological Magazine, 149, 819–826.

    Google Scholar 

  • Mukherjee, S., 2013, Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. International Journal of Earth Sciences, 102, 1811–1835.

    Google Scholar 

  • Mukherjee, S., 2017, Airy’s isostatic model: a proposal for a realistic case. Arabian Journal of Geosciences, 10, 268. https://doi.org/10.1007/s12517-017-3050-9

    Google Scholar 

  • Mukherjee, S., 2018a, Moment of inertia for rock blocks subject to bookshelf faulting with geologically plausible density distributions. Journal of Earth System Science, 127, 80. https://doi.org/10.1007/s12040-018-0978-4

    Google Scholar 

  • Mukherjee, S., 2018b, Locating center of gravity in geological contexts. International Journal of Earth Sciences, 107, 1935–1939.

    Google Scholar 

  • Mukherjee, S. and Mulchrone, K., 2012, Estimating the viscosity and Prandtl number of the Tso Morari Gneiss Dome, western Indian Himalaya. International Journal of Earth Sciences, 101, 1929–1947.

    Google Scholar 

  • Mukherjee, S. and Mulchrone K.F., 2013, Viscous dissipation pattern in incompressible Newtonian simple shear zones: an analytical model. International Journal of Earth Sciences, 102, 1165–1170.

    Google Scholar 

  • Mukherjee, S. and Khonsari, M.M., 2017, Brittle rotational faults and the associated shear heating. Marine and Petroleum Geology, 88, 551–554.

    Google Scholar 

  • Mukherjee, S. and Agarwal, I., 2018, Shear heat model for gouge free dip-slip listric normal faults. Marine and Petroleum Geology, 98, 397–400.

    Google Scholar 

  • Mukherjee, S. and Khonsari, M.M., 2018, Inter-book normal fault-related shear heating in brittle bookshelf faults. Marine and Petroleum Geology, 97, 45–48.

    Google Scholar 

  • Mukherjee, S., Misra, A.A., Calvès, G., and Nemčok, M., 2017, Tectonics of the Deccan Large Igneous Province: an introduction. In: Mukherjee, S., Misra, A.A., Calvès, G., and Nemčok, M. (eds.), Tectonics of the Deccan Large Igneous Province. Geological Society, London, Special Publications, 445, p. 1–9.

    Google Scholar 

  • Neves, S.P., Vauchez, A., and Archanjo, C.J., 1996, Shear zone-controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from northeast Brazil. Tectonophysics, 262, 349–364.

    Google Scholar 

  • Neves, S.P., Vauchez, A., and Feraud, G., 2000, Tectono-thermal evolution, magma emplacement, and shear zone development in the Caruaru area (Borborema Province, NE Brazil). Precambrian Research, 99, 1–32.

    Google Scholar 

  • O’Neill, C., Lenardic, A., Weller, M., Moresi, L., Quenette, S., and Zhang, S., 2016, A window for plate tectonics in terrestrial planet evolution? Physics of the Earth and Planetary Interiors, 255, 80–92.

    Google Scholar 

  • Passchier, C.W. and Platt, J.P., 2017, Shear zone junctions: of zippers and freeways. Journal of Structural Geology, 95, 188–202.

    Google Scholar 

  • Peucat, J.J., Capdevila, R., Drareni, A., Mahdjoub, Y., and Kahoui, M., 2005, The Eglab massif in the West African Craton (Algeria), an original segment of the Eburnean orogenic belt: petrology, geochemistry and geochronology. Precambrian Research, 136, 309–352.

    Google Scholar 

  • Pinkerton, H. and Stevenson, R.J., 1992, Methods of determining the rheological properties of magmas at sub-liquidus temperatures. Journal of Volcanology and Geothermal Research, 53, 47–66.

    Google Scholar 

  • Platt, J.P. and Passchier, C.W., 2016, Zipper junctions: a new approach to the intersections of conjugate strike-slip faults. Geology, 44, 795–798.

    Google Scholar 

  • Ranalli, G., 1995, Rheology of the Earth. Springer, Heidelberg, 413 p.

    Google Scholar 

  • Rey, P.F., Teyssier, C., and Whitney, D.L, 2009, The role of partial melting and extensional strain rates in the development of metamorphic core complexes. Tectonophysics, 477, 135–144.

    Google Scholar 

  • Rey, P.F., Mondy, L., Duclaux, G., Teyssier, C., Whitney, D.L., Bocher, M., and Prigent, C., 2017, The origin of contractional structures in extensional gneiss domes. Geology, 45, 263–266.

    Google Scholar 

  • Sharples, W., Moresi, L.N., Jadamec, M.A., and Revote, J., 2015, Styles of rifting and fault spacing in numerical models of crustal extension. Journal of Geophysical Research: Solid Earth, 120, 4379–4404.

    Google Scholar 

  • So, B.D. and Yuen, D.A., 2014, Stationary points in activation energy for heat dissipated with a power law temperature-dependent viscoelastoplastic rheology. Geophysical Research Letters, 41, 4953–4960.

    Google Scholar 

  • So, B.D., Yuen, D.A., Regenauer-Lieb, K., and Lee, S.M., 2012, Asymmetric lithospheric instability facilitated by shear modulus contrast: implications for shear zones. Geophysical Journal International, 190, 23–36.

    Google Scholar 

  • Sokoutis, D., Corti, G., Bonini, M., Pierre Brun, J., Cloetingh, S., Mauduit, T., and Manetti, P., 2007, Modelling the extension of heterogeneous hot lithosphere. Tectonophysics, 444, 63–79.

    Google Scholar 

  • Thatcher, W. and Hill, D.P., 1991, Fault orientations in extensional and conjugate strike-slip environments and their implications. Geology, 19, 1116–1120.

    Google Scholar 

  • Tirel, C., Brun, J.P., and Sokoutis, D., 2006, Extension of thickened and hot lithospheres: inferences from laboratory modeling. Tectonics, 25. https://doi.org/10.1029/2005TC001804

    Google Scholar 

  • Tirel, C., Brun, J.P., and Burov, E., 2008, Dynamics and structural development of metamorphic core complexes. Journal of Geophysical Research: Solid Earth, 113. https://doi.org/10.1029/2005JB003694

  • Vidal, M., Gumiaux, C., Cagnard, F., Pouclet, A., Ouattara, G., and Pichon, M., 2009, Evolution of a Paleoproterozoic “weak type” orogeny in the West African Craton (Ivory Coast). Tectonophysics, 477, 145–159.

    Google Scholar 

  • Vigneresse, J.L. and Tikoff, B., 1999, Strain partitioning during partial melting and crystallizing felsic magmas. Tectonophysics, 312, 117–132.

    Google Scholar 

  • Wang, K., Burov, E., Gumiaux, C., Chen, Y., Lu, G., Mezri, L., and Zhao, L., 2015, Formation of metamorphic core complexes in non-over-thickened continental crust: a case study of Liaodong Peninsula (East Asia). Lithos, 238, 86–100.

    Google Scholar 

  • Weinberg, R.F., Mark, G., and Reichardt, H., 2009, Magma ponding in the Karakoram shear zone, Ladakh, NW India. Geological Society of America Bulletin, 121, 278–285.

    Google Scholar 

  • West, M.W., 1993, Extensional reactivation of thrust faults accompanied by coseismic surface rupture, southwestern Wyoming and north-central Utah. Geological Society of America Bulletin, 105, 1137–1150.

    Google Scholar 

  • Willingshofer, E., Sokoutis, D., and Burg, J.P., 2005, Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone. In: Gapais, D., Brun, J.P., and Cobbold, P.R. (eds.), Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere. Geological Society, London, Special Publications, 243, p. 277–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Feng.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Wang, E., Amponsah, P.O. et al. Effect of pre-existing faults on the distribution of lower crust exhumation under extension: numerical modelling and implications for NW Ghana. Geosci J 23, 961–975 (2019). https://doi.org/10.1007/s12303-019-0005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-019-0005-z

Key words

Navigation