Skip to main content
Log in

The sub-crustal stress estimation in central Eurasia from gravity, terrain and crustal structure models

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

We investigate the horizontal stress field beneath crustal structures of central Eurasia. The numerical procedure applied for a simultaneous determination of the sub-crustal stress and the crustal thickness from the global gravity, terrain and crustal structure models is based on solving Navier-Stokes’ problem which incorporates the inverse solution to the Vening Meinesz- Moritz’s problem of isostasy. The numerical results reveal that a spatial distribution of the sub-crustal stress in this study area closely resembles the regional tectonic configuration comprising parts of the Eurasian, Indian and Arabian lithospheric plates. The maximum shear stress intensity is generated by a subduction of the Indian plate beneath the Tibetan block. The intra-plate tectonic configuration is marked by the stress anomalies distributed along major active strike-slip fault systems and sections of subduction which separate the Tibetan and Iranian blocks from the rest of the Eurasian plate. The most pronounced intra-plate stress anomalies are related with a subduction of the Eurasian plate beneath the Tibetan block. We also demonstrate that a prevailing convergent orientation of stress vectors agree with the compressional tectonism of orogenic formations (Himalaya and Tibet Plateau, Than Shan, Zargos and Iranian Plateau), while the extensional tectonism of continental basins (Tarim, Ganges-Brahmaputra, Sichuan) is manifested by a divergence of stress vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bilham, R., Larson, K., and Freymueller, J., 1997, GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 386, 61–64.

    Article  Google Scholar 

  • Dziewonski, A.M. and Anderson, D.L., 1981, Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Article  Google Scholar 

  • England, P. and McKenzie, D., 1982, A thin viscous sheet model for continental deformation. Geophysical Journal of the Royal Astronomical Society, 70, 295–321.

    Article  Google Scholar 

  • Eshagh, M., 2014, Determination of Moho discontinuity from satellite gradiometry data: linear approach. Geodynamics Research International Bulletin, 1, 1–13.

    Google Scholar 

  • Eshagh, M. and Tenzer, R., 2014, Sub-crustal stress determined using gravity and crust structure models. Computational Geosciences. doi: 10.1007/s10596-014-9460-9

    Google Scholar 

  • Fu, R., 1986, A numerical study of the effects of boundary conditions on mantle convection models constrained to fit the low degree geoid coefficients. Physics of the Earth and Planetary Interiors, 44, 257–263.

    Article  Google Scholar 

  • Fu, R., 1989, Plate motions, Earth’s geoid anomalies and mantle convection. In: Geophysical Monography Series. IUGG and AGU, Vol. 49, p. 47–54.

    Google Scholar 

  • Fu, R. and Huang, J., 1983, The global stress field in the lithosphere obtained from satellite gravitational harmonics. Physics of the Earth and Planetary Interiors, 31, 269–276.

    Article  Google Scholar 

  • Fu, R. and Huang, J., 1990, Global stress pattern constrained on deep mantle flow and tectonic features. Physics of the Earth and Planetary Interiors, 60, 314–323.

    Article  Google Scholar 

  • Fu, R., Huang, J., Dong, S., and Chang, X., 2003, New mantle convection models constrained by seismic tomography data. Chinese Journal of Geophysics, 46, 106–113.

    Google Scholar 

  • Laske, G., Masters, G., Ma, Z., and Pasyanos, M.E., 2012, CRUST1.0: An updated global model of Earth’s crust. Geophysical Research Abstracts, 14. doi: EGU2012-3743-1

    Google Scholar 

  • Liu, H.S., 1977, Convection pattern and stress system under the African plate. Physics of the Earth and Planetary Interiors, 15, 60–68.

    Article  Google Scholar 

  • Liu, H.S., 1978, Mantle convection pattern and subcrustal stress under Asia. Physics of the Earth and Planetary Interiors, 16, 247–256.

    Article  Google Scholar 

  • Liu, H.S., 1979, Convection-generated stress concentration and seismogenic models of the Tangshan Earthquake. Physics of the Earth and Planetary Interiors, 19, 307–318.

    Article  Google Scholar 

  • Liu, H.S., 1980a, Mantle convection and subcrustal stress under Australia. Modern Geology, 7, 29–36.

    Google Scholar 

  • Liu, H.S., 1980b, Convection generated stress field and intra-plate volcanism. Tectonophysics, 65, 225–244.

    Article  Google Scholar 

  • Love, A.E.H., 1944, A treatise on the mathematical theory of elasticity. Dover Publications, New York, 249 p.

    Google Scholar 

  • Mayer-Guerr, T., Rieser, D., Höck, E., Brockmann, J.M., Schuh, W.-D., Krasbutter, I., Kusche, J., Maier, A., Krauss, S., Hausleitner, W., Baur, O., Jäggi, A., Meyer, U., Prange, L., Pail, R., Fecher, T., and Gruber, T., 2012, The new combined satellite only model GOCO03S, International Symposium on Gravity, Geoid and Height Systems GGHS2012 (Abstract), Venice, October 9–12, p. 13.

    Google Scholar 

  • McNutt, M., 1980, Implication of regional gravity for state of stress in the Earth’s crust and upper mantle. Journal of Geophysical Research, 85, 6377–6396.

    Article  Google Scholar 

  • Molnar, P. and Tapponnier, P., 1975, Cenozoic tectonics of Asia, effects of a continental collision. Science, 189, 419–426.

    Article  Google Scholar 

  • Moritz, H., 1990, The figure of the Earth: theoretical geodesy and the Earth’s interior. Wichmann, Karlsruhe, 279 p.

    Google Scholar 

  • Moritz, H., 2000, Geodetic Reference System 1980. Journal of Geodesy, 74, 128–162.

    Article  Google Scholar 

  • Mulch, A. and Chamberlain, C.P., 2006, The rise and growth of Tibet. Nature, 439, 670–671.

    Article  Google Scholar 

  • Pavlis, N.K., Factor, J.K., and Holmes, S.A., 2007, Terrain-related gravimetric quantities computed for the next EGM. 1st International Symposium of the International Gravity Field Service 2006 (Abstract), Istanbul, August 28–September 1, p. 26.

    Google Scholar 

  • Pick, M., 1994, The geoid and tectonic forces. In: Vanícek, P. and Christou, N. (eds.), Geoid and its Geophysical interpretations. CRC Press, Boca Raton, p. 240–253.

    Google Scholar 

  • Pick, M. and Charvatova-Jakubkova, I., 1988, Modification of the Runcorn’s equations on the convection flows. Studia Geophysica et Geodaetica, 32, 47–53.

    Article  Google Scholar 

  • Ricard, Y., Fleitout, L., and Froidevaux, C., 1984, Geoid heights and lithospheric stresses for a dynamic Earth. Annales Geophyscae, 2, 267–286.

    Google Scholar 

  • Rowley, D.B. and Currie, B.S., 2006, Palaeo-altimetry of the late Eocence to Miocence Lunpola basin, central Tibet. Nature, 439, 677–687.

    Article  Google Scholar 

  • Runcorn, S.K., 1964, Satellite gravity measurements and laminar viscous flow model of the Earth mantle. Journal of Geophysical Research, 69, 4389–4394.

    Article  Google Scholar 

  • Runcorn, S.K., 1967, Flow in the mantle inferred from the low degree harmonics of the geopotential. Geophysical Journal Research of Astronomical Society, 14, 375–384.

    Article  Google Scholar 

  • Runcorn, S.K., 1980, Mechanism of plate tectonics: mantle convection currents, plumes, gravity sliding or expansion? Tectonophysics, 63, 297–307.

    Article  Google Scholar 

  • Sampietro, D., Reguzzoni, M., and Braitenberg, C., 2014, The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. In: Rizos, C. and Willis, P. (eds.), Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, Vol. 139, Springer-Verlag, Berlin.

  • Shin, Y.H., Xu, H., Braitenberg, C., Fang, J., and Wang, Y., 2007, Moho undulations beneath Tibet from GRACE-integrated gravity data. Geophysical Journal International, 170, 971–985.

    Article  Google Scholar 

  • Shin, Y.H., Shum, C.-K., Braitenberg, C., Lee, S.M., Xu, H., Choi, K.S., Baek, J.H., and Park, J.U., 2009, Three dimensional fold structure of the Tibetan Moho from GRACE gravity data. Geophysical Research Letters, 36, L01302.

    Google Scholar 

  • Sjöberg, L.E., 2009, Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophysical Journal International, 179, 1527–1536.

    Article  Google Scholar 

  • Souriau, M. and A. Souriau, 1983. Global tectonics and the geoid. Physics of the Earth and Planetary Interiors, 33, 126–136.

    Article  Google Scholar 

  • Sperner, B., Müller, B., Heidbach, O., Delvaux, D., Reinecker, J., and Fuchs, K., 2003, Tectonic stress in the Earth's crust: advances in the World Stress Map project. In: Nieuwland, D.A. (ed.), New insights in structural interpretation and modeling. Geological Society of London, Special Publication, 212, p. 101–116.

    Article  Google Scholar 

  • Tenzer, R., Novák, P., Vajda, P., Gladkikh, V., and Hamayun, V., 2012a, Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Computational Geosciences, 16, 193–207.

    Article  Google Scholar 

  • Tenzer, R., Gladkikh, V., Vajda, P., and Novák, P., 2012b, Spatial and spectral analysis of refined gravity data for modelling the crustmantle interface and mantle-lithosphere structure. Surveys in Geophysics, 33, 817–839.

    Article  Google Scholar 

  • Tenzer, R., Bagherbandi, M., Hwang, Ch., and Chang, E.T.Y., 2013, Moho interface modeling beneath Himalayas, Tibet and central Siberia using GOCO02S and DTM2006.0. Special issue on geophysical and climate change studies in Tibet, Xinjiang, and Siberia from satellite geodesy. Terrestrial, Atmospheric and Oceanic Sciences, 24, 581–590.

    Google Scholar 

  • Tenzer, R. and Eshagh, M., 2015, Sub-crustal stress in the Taiwan region. Terrestrial, Atmospheric and Oceanic Sciences, 26, 261–268.

    Article  Google Scholar 

  • Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjöberg, L.E., Novák, P., and Jin, S., 2015a, Analysis of the refined CRUST1.0 crustal model and its gravity field. Surveys in Geophysics, 36, 139–165.

    Article  Google Scholar 

  • Tenzer, R., Eshagh, M., and Jin, S., 2015b, Martian sub-crustal stress from gravity and topographic models. Earth and Planetary Science Letters, 425, 84–92.

    Article  Google Scholar 

  • Zoback, M.L. and Zoback, M.D., 1980, State of stress in the conterminous United States. Journal of Geophysical Research, 85, 6113–6156.

    Article  Google Scholar 

  • Zoback, M.D. and Zoback, M.L., 1991, Tectonic stress field of North America and relative plate motions. In: Slemmons, D.B., Engdahl, E.R., Zoback, M.D., and Blackwell, D.D. (eds.), Neotectonics of North America. Geological Society of America, Denver, p. 339–366.

    Google Scholar 

  • Zoback, M.L., Zoback, M.D., Adams, J., Assumpção, M., Bell, S., Bergman, E.A., Blümling, P., Brereton, N.R., Denham, D., Ding, J., Fuchs, K., Gay, N., Gregersen, S., Gupta, H.K., Gvishiani, A., Jacob, K., Klein, R., Knoll, P., Magee, M., Mercier, J.L., Müller, B.C., Paquin, C., Rajendran, K., Stephansson, O., Suarez, G., Suter, M., Udías, A., Xu, Z.H., and Zhizhin, M., 1989, Global patterns of tectonic stress. Nature, 341, 291–298.

    Article  Google Scholar 

  • Vening Meinesz, F.A., 1931, Une nouvelle methode pour la reduction isostatique regionale de l’intensite de la pesanteur. Bulletin Geodetique, 29, 33–51.

    Article  Google Scholar 

  • Watts, A.B., 2001, Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge. 551 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenzer, R., Eshagh, M. & Shen, W. The sub-crustal stress estimation in central Eurasia from gravity, terrain and crustal structure models. Geosci J 21, 47–54 (2017). https://doi.org/10.1007/s12303-016-0036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-016-0036-7

Key words

Navigation