Skip to main content
Log in

Amino acid promotes selenium uptake in medicinal plant Plantago asiatica

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The medicinal plant, Plantago asiatica have high selenium (Se) accumulation ability but is considered lower compared to other Se-hyperaccumulators. In this experiment, we evaluated the effects of different amino acid concentrations (600, 900, 1200, and 1500-fold dilutions) on the growth and Se uptake in P. asiatica for possible improvement of Se accumulation ability and medicinal value of P. asiatica. The 600, 900, and 1200-fold amino acid dilutions increased the root and shoot biomass of P. asiatica. Additionally, the photosynthetic pigments contents (chlorophyll a, chlorophyll b, and total chlorophyll) and antioxidant enzymes activities (superoxide dismutase, peroxidase, and catalase) of P. asiatica were increased by the different amino acid concentrations. However, these amino acid concentrations reduced the soluble protein content of P. asiatica to some extent. The Se content and extraction from P. asiatica were also enhanced and had a quadratic polynomial regression relationship with the Se extraction tissues and their Se contents. In addition, there were significant correlations between the biomass of Se extraction tissues and their Se contents. Our findings indicate that various amino acid concentrations promote growth and Se uptake in P. asiatica, but 900-fold amino acid dilution is the best concentration for enhancing Se accumulation ability in P. asiatica shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd El-Aal FS, Shaheen AM, Ahmed AA, Mahmoud AR (2010) Effect of foliar application of urea and amino acids mixtures as antioxidants on growth, yield and characteristics of squash. Res J Agric Biol Sci 6(5):583–588

    CAS  Google Scholar 

  • Alfosea-Simón M, Simón-Grao S, Zavala-Gonzalez EA, Cámara-Zapata JM, Simón I, Martínez-Nicolás JJ, Lidón V, García-Sánchez F (2021) Physiological, nutritional and metabolomic responses of tomato plants after the foliar application of amino acids aspartic acid, glutamic acid and alanine. Front Plant Sci 11:581234

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali Q, Ashraf M, Shahbaz M, Humera H (2008) Ameliorating effect of foliar applied proline on nutrient uptake in water stressed maize (Zea mays L.) plants. Pak J Bot 40(1):211–219

    CAS  Google Scholar 

  • Ali S, Abbas Z, Seleiman MF, Rizwan M, YavaŞ İ, Alhammad B, Shami A, Hasanuzzaman M, Kalderis D (2020) Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants 9(7):896

    Article  CAS  PubMed Central  Google Scholar 

  • An MY (2017) Study on the main influencing factors of Selenium morphological transformation in Selenium-rich soil and its effect on crop absorption. Fujian Agriculture and Forestry University, Fujian

    Google Scholar 

  • Astaneh RK, Bolandnazar S, Nahandi FZ, Oustan S (2018) The effects of selenium on some physiological traits and K, Na concentration of garlic (Allium sativum L.) under NaCl stress. Inf Process Agric 5(1):156–161

    Google Scholar 

  • Bahari A, Pirdashti H, Yaghubi M (2013) The effects of amino acid fertilizers spraying on photosynthetic pigments and antioxidant enzymes of wheat (Triticum aestivum L.) under salinity stress. Int J Agron Plant Prod 4(4):787–793

    Google Scholar 

  • Bao J, Liu JX, Chen FJ, Zhang FS, Mi GH (2009) roles of phytohormones in nitrogen-and phosphorus-regulated root morphogenesis. Plant Physiol Commun 45(7):706–710

    CAS  Google Scholar 

  • Causin HF (1996) The central role of amino acids on nitrogen utilization and plant growth. J Plant Physiol 149(3–4):358–362

    Google Scholar 

  • Chauhan R, Awasthi S, Tripathi P, Mishra S, Dwivedi S, Niranjan A, Mallick S, Tripathi P, Pande V, Tripathi RD (2017) Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicol Environ Saf 138:47–55

    Article  CAS  PubMed  Google Scholar 

  • Chauhan R, Awasthi S, Srivastava S, Dwivedi S, Pilon-Smits EAH, Dhankher OP, Tripathi RD (2019) Understanding selenium metabolism in plants and its role as a beneficial element. Crit Rev Environ Sci Technol 49:1937–1958

    Article  CAS  Google Scholar 

  • Chiang LC, Chiang W, Chang MY, Lin CC (2003) In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantago asiatica. Am J Chin Med 31(02):225–234

    Article  PubMed  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141(2):341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao ZB, Cang J, Xu Z (2004) Plant physiology experiment. Harbin Institute of Technology Press, Harbin

    Google Scholar 

  • Häusler RE, Ludewig F, Krueger S (2014) Amino acids—a life between metabolism and signaling. Plant Sci 229:225–237

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ, Zhao FJ (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46(3):282–292

    Article  CAS  Google Scholar 

  • Hildebrandt TM, Nesi AN, Araújo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8(11):1563–1579

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Yin Y, Wu G (2015) Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp Biol Med 240(8):997–1007

    Article  CAS  Google Scholar 

  • Khalil AA, Osman EAM, Zahran FAF (2008) Effect of amino acids and micronutrients foliar application on onion growth, yild and its components and chemical chracteristics. J Soil Sci Agric Eng 33(4):3143–3150

    Google Scholar 

  • Khan S, Yu H, Li Q, Gao Y, Sallam B, Wang H, Liu P, Jiang W (2019) Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy 9(5):266

    Article  CAS  Google Scholar 

  • Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98(2):237–252

    Article  CAS  PubMed  Google Scholar 

  • Li M, Xiang G, Du Y, Wang Y, Peng Y (2008) Effects of different concentrations of amino acid phytonutrients on germination and seedling growth of kidney bean. South China Agric 04:10–11

    Google Scholar 

  • Liang X, Cao X, Zhang R, Liu J, Wang A (2021) Effects of different sorghum and soybean intercropping patterns on yield, water and nutrient use efficiency. Acta Agric Boreali-Sin 36(3):174–184

    Google Scholar 

  • Liao R, Huang K, Li K (2018) Study on selenium enrichment characteristics of medicinal plant Plantain plantago L. J Chin Med Mater 41(2):276–279

    Google Scholar 

  • Lin CC, Kan WS (1990) Medicinal plants used for the treatment of hepatitis in Taiwan. Am J Chin Med 18(01–02):35–43

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Sun J, Cui T, Zhou X, Liao M, Huan Y, Yang L, Wu C, Xia X, Wang Y, Li Z, Zhu J, Wang Z (2020a) Selenium accumulation characteristics of Cyphomandra betacea (Solanum betaceum) seedlings. Physiol Mol Biol Plants 26(7):1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Wu C, Jiang W, Liao M, Tang Y, Wang J, Lv X, Liang D, Xia H, Wang X, Deng Q, Wang Z (2020b) Grafting increases cadmium accumulation in the post-grafting generations of the potential cadmium-hyperaccumulator Solanum photeinocarpum. Chem Ecol 36(7):685–704

    Article  CAS  Google Scholar 

  • Lithander A (1992) Intracellular fluid of waybread (Plantago major) as a prophylactic for mammary cancer in mice. Tumor Biol 13(3):138–141

    Article  CAS  Google Scholar 

  • Liu W, Xie B, Ni G, Deng G (2011) Effects of gibberellin and amino acids on the growth of branches and leaves of Syzygium grijsii. Bull Bot Res 31(2):218–226

    Google Scholar 

  • Liu L, Han J, Deng L, Zhou H, Bie Y, Jing Q, Lin L, Wang J, Liao M (2021) Effects of diethyl aminoethyl hexanoate on the physiology and selenium absorption of grape seedlings. Acta Physiol Plant 43(8):1–8

    Article  CAS  Google Scholar 

  • Ma Y (2006) Biological characteristics and cultivation techniques of Plantain plantago L. J Henan Agric Sci 9:109–110

    Google Scholar 

  • Noroozlo YA, Souri MK, Delshad M (2019) Stimulation effects of foliar applied glycine and glutamine amino acids on lettuce growth. Open Agric 4(1):164–172

    Article  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274

    Article  CAS  PubMed  Google Scholar 

  • Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plant 45(4):481–487

    Article  CAS  Google Scholar 

  • Rastmanesh F, Moore F, Keshavarzi B (2010) Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman Province, Iran. Bull Environ Contam Toxicol 85(5):515–519

    Article  CAS  PubMed  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. The Lancet 356(9225):233–241

    Article  CAS  Google Scholar 

  • Rayman MP (2012) Selenium and human health. The Lancet 379(9822):1256–1268

    Article  CAS  Google Scholar 

  • Slekovec M, Goessler W (2005) Accumulation of selenium in natural plants and selenium supplemented vegetable and selenium speciation by HPLC-ICPMS. Chem Speciat Bioavailab 17(2):63–73

    Article  CAS  Google Scholar 

  • Souri MK, Hatamian M (2019) Aminochelates in plant nutrition: a review. J Plant Nutr 42(1):67–78

    Article  CAS  Google Scholar 

  • Souri MK, Yaghoubi SF, Moghadamyar M (2017) Growth and quality of cucumber, tomato, and green bean plants under foliar and soil applications of an aminochelate fertilizer. Hortic Environ Biotechnol 58(6):530–536

    Article  CAS  Google Scholar 

  • Tantawy A, Abdel-Mawgoud AMR, El-Nemr MA, Chamoun YG (2009) Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. Eur J Sci Res 30(3):484–494

    Google Scholar 

  • Teixeira WF, Fagan EB, Soares LH, Umburanas RC, Reichardt K, Dourado-Neto D (2017) Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front Plant Sci 8:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira WF, Soares LH, Fagan EB, Mello S, Reichardt K, Dourado-Neto D (2020) Amino acids as stress reducers in soybean plant growth under different water-deficit conditions. J Plant Growth Regul 39(2):905–919

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51(1):401–432

    Article  CAS  Google Scholar 

  • van Asten PJA, van Bodegom PM, Mulder LM, Kropff MJ (2005) Effect of straw application on rice yields and nutrient availability on an alkaline and a pH-neutral soil in a Sahelian irrigation scheme. Nutr Cycl Agroecosyst 72:255–266

    Article  Google Scholar 

  • Xie S, Wang W, Zhang F, Yin H (2019) Research progress of plant biostimulants. Chin J Biol Control 35(3):487–496

    Google Scholar 

  • Yan Y, Gao S, Wang W, Wang C (2002) Effects of amino acid high efficiency liquid fertilizer on wheat growth and yield. J Henan Agric Univ 01:38–41

    Google Scholar 

  • Yuan L, Zhu Y, Lin Z, Banuelos G, Li W, Yin X (2013) A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS ONE 8(6):e65615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101(6):2063–2066

    Article  CAS  PubMed  Google Scholar 

  • Cerdán M, Sánchez-Sánchez A, Oliver M, Juárez M, Sánchez-Andreu JJ (2008) Effect of foliar and root applications of amino acids on iron uptake by tomato plants IV. In: Balkan symposium on vegetables and potatoes, vol 830, pp 481–488

  • Mayland HF, Gough LP, Stewart KC (1991) Chapter E: Selenium mobility in soils and its absorption, translocation, and metabolism in plants

  • Shao S, Zheng B, Luo C, Su H, Wang M, Liu X, Pan Z (2007) Selenium hyperaccumulator was first discovered in Enshi, Hubei province. In: Proceedings of the 11th Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry, p 585

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyan Liao.

Ethics declarations

Conflict of interest

The authors declare no conflict and competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, R., Zhu, J. Amino acid promotes selenium uptake in medicinal plant Plantago asiatica. Physiol Mol Biol Plants 28, 1005–1012 (2022). https://doi.org/10.1007/s12298-022-01196-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01196-2

Keywords

Navigation