Skip to main content

Advertisement

Log in

Exploring genetic variations in threatened medicinal orchids using start codon targeted (SCoT) polymorphism and marker-association with seed morphometric traits

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

We aimed to study the genetic diversity and population structure of eight Iranian terrestrial orchid species, including Anacamptis coriophora (L.) R. M. Bateman, Pridgeon and M. W. Chase, Dactylorhiza umbrosa (Kar. & Kir.) Nevski, Himantoglossum affine (Boiss.) Schltr., Orchis collina Banks and Solander, Orchis mascula (L.) L., Orchis simia Lam., Ophrys schulzei Bornm. and Fleischm., and Ophrys straussii H. Fleischm. and Bornm. using start target codon markers (SCoT) and finding markers associated with seed morphometric traits. A total of 254 reproducible SCoT fragments were generated, of which 248 fragments were polymorphic (average polymorphism of 96.18%). The SCoT markers showed a narrow range of polymorphism information content (PIC) varied from 0.397 for S9 primer to 0.499 for S11 and S20 primers. Based on the population analysis results, the Orchis simia accessions collected from Paveh region (Os.P) represented the lowest observed number of alleles (Na) (1.13) and effective number of alleles (Ne) (1.09). At the same time, the highest Na (1.29) and Ne (1.18) values were obtained in O. schulzei collected from Javanrood (Oyst.JA). Shannon’s information index (I) was ranged from 0.03 for D. umbrosa accessions collected from Marivan (Du.M population) to 0.263 for Ha.Ja population (H. affine accessions collected from Javanrood). The UPGMA dendrogram obtained with the Jaccard similarity coefficient (r = 0.97295) divided 97 studied terrestrial orchid accessions into eight groups mainly based on species type and geographical origin. Based on the Bayesian statistical index, the highest probability of the data was achieved when accessions were divided into eight groups (K = 8). Multiple association analysis (MRA) revealed significant associations between some of SCoT bands with seed morphometric traits. Our findings can be useful for germplasm characterization, conservation, and improvement of Iranian terrestrial orchid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CITES :

Convention on International Trade in Endangered Species of Wild Fauna and Flora

MRA :

Multiple Association Analysis

PCoA :

Principal Coordinate Analysis

PIC :

Polymorphism Information Content

SEM :

Scanning Electron Microscope

UPGMA :

Un-weighted Paired Group Methods with Arithmetic Mean

References

  • Akçin TA, Ozdener Y, Akçin A (2009) Taxonomic value of seed characters in orchids from Turkey. Belg J Bot 142(2):124–139

    Google Scholar 

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Article  Google Scholar 

  • Aybeke M (2007) Pollen and seed morphology of some Ophrys L. (Orchidaceae) taxa. J Plant Biol 50(4):387–395. https://doi.org/10.1007/bf03030673

    Article  Google Scholar 

  • Azizi A, Wagner C, Honermeier B, Friedt W (2009) Intraspecific diversity and relationship between subspecies of Origanum vulgare revealed by comparative AFLP and SAMPL marker analysis. Plant Syst Evol 281(1–4):151–160

    Article  CAS  Google Scholar 

  • Barthlott W, Große-Veldmann B, Korotkova N (2014) Orchid seed diversity: a scanning electron microscopy survey. Englera 32:1–245

    Google Scholar 

  • Bhattacharyya P, van Staden J (2018) Molecular insights into genetic diversity and population dynamics of five medicinal Eulophia species: a threatened orchid taxa of Africa. Physiol Mol Biol Plants 24(4):631–641

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Kumaria S, Kumar S, Tandon P (2013) Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529(1):21–26. https://doi.org/10.1016/j.gene.2013.07.096

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Ghosh S, Mandi SS, Kumaria S, Tandon P (2017) Genetic variability and association of AFLP markers with some important biochemical traits in Dendrobium thyrsiflorum, a threatened medicinal orchid. S Afr J Bot 109:214–222. https://doi.org/10.1016/j.sajb.2016.12.012

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breitkopf H, Onstein RE, Cafasso D, Schlüter PM, Cozzolino S (2015) Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptiveOphrysorchids. New Phytol 207(2):377–389. https://doi.org/10.1111/nph.13219

    Article  PubMed  Google Scholar 

  • Cai X, Feng Z, Zhang X, Xu W, Hou B, Ding X (2011) Genetic diversity and population structure of an endangered Orchid (Dendrobium loddigesii Rolfe) from China revealed by SRAP markers. Sci Hortic 129(4):877–881

    Article  Google Scholar 

  • Chase MW, Pippen JS (1988) Seed morphology in the Oncidiinae and related subtribes (Orchidaceae). Syst Bot 13:313–323

    Article  Google Scholar 

  • CITES (2014) The convention on international trade in endangered species of Wild Fauna and Flora: appendices. See https://cites.org/eng/app/appendices.php

  • Collard BC, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Report 27(1):86–93

    Article  CAS  Google Scholar 

  • Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20(9):487–494

    Article  Google Scholar 

  • Culp TW, Harrell DC, Kerr T (1979) Some genetic implications in the transfer of high fiber strength genes to upland cotton. Crop Sci 19(4):481–484

    Article  Google Scholar 

  • Dafni A, Ivri Y (1979) Pollination Ecology of, and Hybridization between, Orchis coriophora L. and O. Collina Sol. Ex Russ. (Orchidaceae) in Israel. New Phytologist 83(1):181–187

    Article  Google Scholar 

  • de Boer HJ, Ghorbani A, Manzanilla V, Raclariu AC, Kreziou A, Ounjai S, Osathanunkul M, Gravendeel B (2017) DNA metabarcoding of orchid-derived products reveals widespread illegal orchid trade. Proc Biol Sci 284 (1863)

  • Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Earl DA, vonHoldt BM (2011) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Ebadi A, Ghaderi N, Vafaee Y (2019) Genetic diversity of Iranian and some European grapes as revealed by nuclear and chloroplast microsatellite and SNP molecular markers. J Hortic Sci Biotechnol. https://doi.org/10.1080/14620316.2019.1585210

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:74–578

    Article  Google Scholar 

  • Farhoosh R, Riazi A (2007) A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature. Food Hydrocoll 21(4):660–666. https://doi.org/10.1016/j.foodhyd.2006.07.021

    Article  CAS  Google Scholar 

  • Gallo FR, Souza LA, Milaneze-Gutierre MA, Almeida OJ (2016) Seed structure and in vitro seedling development of certain Laeliinae species (Orchidaceae). Revista Mexicana de Biodiversidad 87(1):68–73. https://doi.org/10.1016/j.rmb.2016.01.005

    Article  Google Scholar 

  • Gamarra R, Ortúñez E, Cela PG, Guadaño V (2012) Anacamptis versus Orchis (Orchidaceae): seed micromorphology and its taxonomic significance. Plant Syst Evol 298(3):597–607

    Article  Google Scholar 

  • Gamarra R, Galán Cela P, Seligrat I, Ortúñez E, Vivar A, Scrugli A (2015) A study of seed micromorphology in the genus Ophrys (Orchidaceae). An Jard Bot Madr. https://doi.org/10.3989/ajbm.2370

    Article  Google Scholar 

  • Gamarra R, GalÁN P, Pedersen HÆ, OrtÚÑEz E, Sanz E (2015) Seed micromorphology in Dactylorhiza Necker ex Nevski (Orchidaceae)and allied genera. Turk J Bot 39:298–309. https://doi.org/10.3906/bot-1401-66

    Article  Google Scholar 

  • Gholami S, Vafaee Y, Nazari F, Ghorbani A (2021) Molecular characterization of endangered Iranian terrestrial orchids using ISSR markers and association with floral and tuber-related phenotypic traits. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-020-00920-0

    Article  PubMed  Google Scholar 

  • Ghorbani A, Gravendeel B, Zare S, De Boer HJ (2014) Illegal wild collection and international trade of CITES-listed terrestrial orchid tubers in Iran. Traffic Bull 26(2):52–58

    Google Scholar 

  • Ghorbani A, Gravendeel B, Naghibi F, de Boer H (2014) Wild orchid tuber collection in Iran: a wake-up call for conservation. Biodivers Conserv 23(11):2749–2760

    Article  Google Scholar 

  • Ghorbani A, Gravendeel B, Selliah S, Zarre S, de Boer H (2017) DNA barcoding of tuberous Orchidoideae: a resource for identification of orchids used in Salep. Mol Ecol Resour 17(2):342–352

    Article  CAS  Google Scholar 

  • Giri L, Jugran AK, Bahukhandi A, Dhyani P, Bhatt ID, Rawal RS, Nandi SK, Dhar U (2017) Population genetic structure and marker trait associations using morphological, phytochemical and molecular parameters in Habenaria edgeworthii-a threatened medicinal orchid of West Himalaya. India Appl Biochem Biotechnol 181(1):267–282

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Kaki A, Vafaee Y, Khadivi A (2020) Genetic variation of Anacamptis coriophora, Dactylorhiza umbrosa, Himantoglossum affine, Orchis mascula, and Ophrys schulzei in the western parts of Iran. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112854

    Article  Google Scholar 

  • Kimura M, Crow JF (1963) The measurement of effective population number. Evol Dev 17(3):279–288

    Article  Google Scholar 

  • Kreutz K, Spencer J (2011) In the Footsteps of Renz: Orchids in Iran. JHOS 8(1):12–24

    Google Scholar 

  • Liu X, Huang Y, Li F, Xu C, Chen K (2014) Genetic diversity of 129 spring orchid (Cymbidium goeringii) cultivars and its relationship to horticultural types as assessed by EST-SSR markers. Sci Horticult 174:178–184. https://doi.org/10.1016/j.scienta.2014.05.015

    Article  Google Scholar 

  • Medhi K, Sarmah DK, Deka M, Bhau BS (2014) High gene flow and genetic diversity in three economically important Zanthoxylum Spp. of upper Brahmaputra valley zone of NE India using molecular markers. Meta Gene 2:706–721. https://doi.org/10.1016/j.mgene.2014.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minh NTA, Van TT, Hau HV, Trieu LN, Tien CV, Vinh TT, Van DN (2019) Genetic diversity and variation of Huperzia serrata (Thunb. ex Murray) Trevis. population in Vietnam revealed by ISSR and SCoT markers. Biotechnol Biotechnol Equip 33(1):1525–1534. https://doi.org/10.1080/13102818.2019.1671896

    Article  Google Scholar 

  • Molvray M, Kores PJ (1995) Character analysis of the seed coat in Spiranthoideae and Orchidoideae, with special reference to the Diurideae (Orchidaceae). Am J Bot 82:1443–1454

    Article  Google Scholar 

  • Moradi S, Dianati Daylami S, Vahdati K, Arab M (2015) Direct somatic embryogenesis of two Iranian native orchid species using protocorm explants. Iran J Horticult Sci Technol 16(1):137–148

    Google Scholar 

  • Nosrati H, Hajiboland R, Razban-Haghighi A, Nikniazi M (2011) A comparative assessment of fruit formation in some orchid species from the southern Caucasus region. Turk J Bot 35(5):553–560

    Google Scholar 

  • Pandey M, Richards M, Sharma J (2015) Microsatellite-based genetic diversity patterns in disjunct populations of a rare orchid. Genetica 143(6):693–704. https://doi.org/10.1007/s10709-015-9867-9

    Article  PubMed  Google Scholar 

  • Peakall ROD, Smouse PE (2006) genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Phillips RD, Reiter N, Peakall R (2020) Orchid conservation: from theory to practice. Ann Bot. https://doi.org/10.1093/aob/mcaa093

    Article  PubMed  Google Scholar 

  • Pinheiro LR, Rabbani ARC, da Silva AVC, da Silva LA, Pereira KLG, Diniz LEC (2012) Genetic diversity and population structure in the Brazilian Cattleya labiata (Orchidaceae) using RAPD and ISSR markers. Plant Syst Evol 298(10):1815–1825

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Infernce of population structure using multilocus genotype data. Genet Biol Drosoph 155:945–959

    CAS  Google Scholar 

  • Rao VR, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult 68(1):1–19

    Article  Google Scholar 

  • Renz J (1978) Flora Iranica. Part: 126 orchidaceae. Naturhistorisches Museum, Vienna

    Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc numerical taxonomy and multivariate analysis system. Version 21 Exeter Software, Setauket

  • Şeker ŞS, Şenel G (2017) Comparative seed micromorphology and morphometry of some orchid species (Orchidaceae) belong to the related Anacamptis Orchis Neotinea Genera. Biologia. https://doi.org/10.1515/biolog-2017-0006

    Article  Google Scholar 

  • Sherif NA, Senthil Kumar T, Rao MV (2020) DNA barcoding and genetic fidelity assessment of micropropagated Aenhenryarotundifolia (Blatt.) C.S. Kumar and F.N. Rasm: a critically endangered jewel orchid. Physiol Mol Biol Plants 26(12):2391–2405. https://doi.org/10.1007/s12298-020-00917-9

    Article  CAS  PubMed  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci 102(41):14694–14699

    Article  CAS  Google Scholar 

  • Szendrak E (1997) Asymbiotic in vitro seed germination, micropropagation and scanning electron microscopy of several temperate terrestrial orchids (Orchidaceae). University of Nebraska, Lincol, Nebraska

    Google Scholar 

  • Tian HZ, Han LX, Zhang JL, Li XL, Kawahara T, Yukawa T, López-Pujol J, Kumar P, Chung MG, Chung MY (2018) Genetic diversity in the endangered terrestrial orchid Cypripedium japonicum in East Asia: insights into population history and implications for conservation. Sci Rep 8(1):6467

    Article  Google Scholar 

  • Vafaee Y, Mozafari AA, Baghalian K (2008) Diversity evaluation of Iranian and several exotic garlic (Allium sativum L.) clones using morphological traits Iranian. J Horticult Sci Technol 8(4):259–270

    Google Scholar 

  • Vafaee Y, Ghaderi N, Khadivi A (2017) Morphological variation and marker-fruit trait associations in a collection of grape (Vitis vinifera L.). Sci Hortic 225:771–782

    Article  Google Scholar 

  • Vafaee Y, Mohammadi G, Nazari F, Fatahi M, Kaki A, Gholami S, Ghorbani A, Khadivi A (2021) Phenotypic characterization and seed-micromorphology diversity of the threatened terrestrial orchids: implications for conservation. S Afr J Bot 137:386–398. https://doi.org/10.1016/j.sajb.2020.11.010

    Article  Google Scholar 

  • Verma J, Sharma K, Thakur K, Sembi JK, Vij SP (2014) Study on seed morphometry of some threatened Western Himalayan orchids. Turk J Bot 38:234–251. https://doi.org/10.3906/bot-1307-14

    Article  Google Scholar 

  • Virk PS, Ford-Lloyd BV, Jackson MT, Pooni HS, Clemeno TP, Newbury HJ (1996) Predicting quantitative variation within rice germplasm using molecularvmarkers. Heredity 76:296–304

    Article  Google Scholar 

  • Yeung EC (2017) A perspective on orchid seed and protocorm development. Bot Stud. https://doi.org/10.1186/s40529-017-0188-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Zou G, Zhao J, Hu L, Lan Y, He J (2020) Genetic relationships and diversity among populations of Paris polyphylla assessed using SCoT and SRAP markers. Physiol Mol Biol Plants 26(6):1281–1293. https://doi.org/10.1007/s12298-020-00808-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Iran National Science Foundation [Grant No. 95826350] and the University of Kurdistan. The authors are thankful to Dr. Sirwan Babaie, Department of plant breeding and genetic, University of Kurdistan for photography of the orchid species.

Funding

The current work was financially supported by the Iran National Science Foundation [grant No. 95826350] and the University of Kurdistan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavar Vafaee.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, S., Vafaee, Y., Nazari, F. et al. Exploring genetic variations in threatened medicinal orchids using start codon targeted (SCoT) polymorphism and marker-association with seed morphometric traits. Physiol Mol Biol Plants 27, 769–785 (2021). https://doi.org/10.1007/s12298-021-00978-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-00978-4

Keywords

Navigation