Skip to main content
Log in

Salt tolerant mutant of Anabaena doliolum exhibiting efficient ammonium uptake and assimilation

  • Short Communication
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Effect of salinity (NaCl, 100 mM) on growth, nitrate reductase (NR) and glutamine synthetase (GS) activities, and uptake of NH4 + was studied in the wild type (WT) and the NaCl-tolerant mutant type (MT) of cyanobacterium Anabaena doliolum. Results obtained in the presence of salt showed significant reduction in the growth rate of both WT and MT cells of A. doliolum by about 77.8 and 40 %, respectively over without NaCl. Similarly rate of NR activity in both WT and MT strains was reduced by 45.5 and 44.5 %, respectively. On the contrary, rate of GS activity of both the WT and MT strains in the presence 100 mM of NaCl increased by 34 and 159 %, respectively. The results of this study indicate that tolerance to NaCl in A. doliolum is more dependent on NH4 + assimilation rather than on nitrate assimilation in relation to N-metabolism. The increased GS activity in MT cells of the cyanobacterium is possibly because of high rate of energy dependent NH4 + uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ADP:

Adenosine di-phosphate

GS:

Glutamine synthetase

NR:

Nitrate reductase

NTG:

N′methyl-N-nitro-N-nitrosoguanidine

CCCP:

Carbonyl. cyanide m-chlorophenyl hydrazone

DNP:

2, 4-Dinitrophenol

WT:

Wild type

MT:

Mutant type

References

  • Abdolzadeh A, Shima K, Lambers H and Chiba K (2008). Change in uptake, transport and accumulation of ions in Nerium oleander (rosebay) as affected by different nitrogen sources and salinity. Ann. Bot., 102: 735–746.

    Article  PubMed  CAS  Google Scholar 

  • Apte SK and Bhagwat AA (1989). Salinity stress induced protein in two N2-fixing Anabaena strains differentially tolerant to salt. J. Bacteriol., 171: 909–915.

    PubMed  CAS  Google Scholar 

  • Aslam M, Huffaker RC and Rains DW (1984). Early effects of salinity on nitrate assmilation in barley seedlings. Plant Physiol., 76: 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Berteli F, Corrales E, Guerrero C, Ariza MJ, Pliego F and Valpuesta V (1995). Salt stress increases ferredoxin dependent glutamate synthase activity and protein level in the leaves of tomato. Plant Physiol., 93: 259–264.

    Article  CAS  Google Scholar 

  • Bhargava S and Singh K (2006). Differential response of NaCl-resistant mutants of the cyanobacterium Nostoc moscurum to salinity and osmotic stresses. World J. Microb. Biotech., 22: 783–789.

    Article  CAS  Google Scholar 

  • Binzel ML, Hess FD, Bressan RA and Hasegawa PM (1988). Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol., 86: 607–614.

    Article  PubMed  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z and Lugtenberg B (2008). High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Env. Microbiol., 10: 1–9.

    CAS  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Formmer WB and Von-Woren N (1999). Three functional transporters for constitutive, diurnally regulated and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11: 937–948.

    Article  PubMed  CAS  Google Scholar 

  • Golden SS (1958). Mutagenesis of cyanobacteria by classical and gene transfer-based method. Methods Enzymol., 167: 714–727.

    Article  Google Scholar 

  • Herbert D, Phipps PJ and Strange RE (1971). Chemical analysis of microbial cells. In: Methods in Microbiology (Eds. Norris JR and Ribbons DW), Academic Press, London, pp. 209–234.

    Chapter  Google Scholar 

  • Karpel R, Alon T, Glaser G, Schuldiner S and Padan E (1991). Expression of a sodium proton antiporter (Nha A) in Escherichia coli is inducing by Na+ and Li+ ions. J. Biol. Chem., 266: 21753–21759.

    PubMed  CAS  Google Scholar 

  • Lauchli A (1990). Calcium, salinity and the plasma membrane. In: Calcium in Plant Growth and Development (Eds Leonard RT and Hepler PK), Am. Soc. Plant Physiol., Rockville, MD., pp. 26–35.

    Google Scholar 

  • Li W, Wang Y, Okamoto M, Olive F, Crawford NM, Siddiqi MY and Glass ADM (2007). Dissection of the AtNTR2.1: AtNTR2.2 inducible high affinity nitrate transporter gene cluster. Plant Physiol., 143: 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Loque DS, Lalonde S, Looger LL, Von-Wiren N and Frommer WB (2007). A cytosolic trans-activation domain essential for ammonium uptake. Nature 446: 195–198.

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL and Randall RJ (1951). Protein measurements by Folin-phenol reagent. J. Biol. Chem., 193: 266–275.

    Google Scholar 

  • Manazano C, Candau P, Gomez-Moreno C, Relimpio AM and Losada M (1976). Ferredoxin-dependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans. Mol. Cell Biochem., 10: 161–169.

    Article  Google Scholar 

  • Martinez V and Cerda A (1989). Nitrate reductase activity in tomato amd cucumber leaves as influenced by NaCl and N2 source. J. Plant Nutri., 12: 1335–1350.

    Article  CAS  Google Scholar 

  • Masclaux-Daubress C, Resisdorf-cren M, Pageau K, Lelandais M, Grandjean O, Kronberger J Valadier MH, Feraud M, Louglent T and Suzuki A (2006). Glutamine synthetase-glutamate synthetase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol., 140: 444–456.

    Article  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM and Pardo JM (1995). Ion homeostasis in NaCl stress environments. Plant Physiol., 109: 735–742.

    PubMed  CAS  Google Scholar 

  • Reed RH, Richardson DL and Stewart WDP (1985). Na+ uptake and extrusion in cyanobacterium Synechocystis PCC 6714 in response to hypersaline treatment: Evidence for transient chages in plasmalemma Na+ permeability. Biochem. Biophys. Acta., 814: 347–355.

    Article  CAS  Google Scholar 

  • Salehi M, Salehi F, Poustini K and Sharifabad HH (2008). The effect of salinity on the nitrogen fixation in 4 cultivars of Medicago sativa l. in the seedling emergence stage. Res. J. Ag. Biological Sci., 4: 413–415.

    CAS  Google Scholar 

  • Shapiro BM and Stadtman ER (1970). Glutamine Synthetase. In: Methods in Enzymology (Eds. Taber H and Tabor CW), Academic Press, New York, London, pp. 910–922.

    Google Scholar 

  • Singh Devendra P and Kshatriya Kavita (2002). Characterization of Salinity-Tolerant Mutant of Anabaena doliolum Exhibiting Multiple Stress Tolerance. Curr. Microbiol., 45:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Soltani N, Zarrini G, Ghasemi Y, Shokravish S and Baftechchi L (2007). Characterization of a soil cyanobacterium Fischerella sp. FS18 under NaCl stress. J. Biol. Sci., 7: 931–936.

    Article  CAS  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A and Takabe T (2001). Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J. Biol. Chem., 276: 36931–36938.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kshatriya, K., Singh, J.S. & Singh, D.P. Salt tolerant mutant of Anabaena doliolum exhibiting efficient ammonium uptake and assimilation. Physiol Mol Biol Plants 15, 377–381 (2009). https://doi.org/10.1007/s12298-009-0043-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-009-0043-5

Keywords

Navigation