Skip to main content
Log in

Spirulina nitrate-assimilating enzymes (NR, NiR, GS) have higher specific activities and are more stable than those of rice

  • Short Communication
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2009

Abstract

Spirulina platensis, a cyanobacterium whose N-metabolic pathway is similar to that of higher plants like rice (Oryza sativa), produces tenfold more protein, indicating a higher capacity for nitrate utilization/removal. Our in vitro analyses in crude extracts revealed that this can be attributed, at least in part, to the higher specific activities (3–6 fold) and half lives (1.2–4.4 fold) of the N-assimilating enzymes, nitrate reductase (NR), nitrite reductase (NiR) and glutamine synthetase (GS) in Spirulina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ali, A., Sivakami, S. and Raghuram, N. (2007a). Effect of nitrate, nitrite, ammonium, glutamate, glutamine and 2-oxoglutarate on the RNA levels and enzyme activities of nitrate reductase and nitrite reductase in rice. Physiol. Mol. Biol. Plants 13(1): 17–25

    CAS  Google Scholar 

  • Ali, A., Sivakami, S. and Raghuram, N. (2007b). Regulation of activity and transcript levels of NR in rice (Oryza sativa): Roles of protein kinase and G-protein. Plant Sci. 172: 406–413

    Article  CAS  Google Scholar 

  • Andrews, M., Lea, P.J., Raven, J.A. and Lindsey, K. (2004). Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater Nuse efficiency? An assessment. Ann. Appl. Biol. 45(1): 25–40

    Article  Google Scholar 

  • Campbell, W.H. (1999). Nitrate reductase structure, function and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 277–303

    Article  PubMed  CAS  Google Scholar 

  • Choi, H.K., Kleinhofs, A. and An, G. (1989). Nucleotide sequence of rice nitrate reductase genes. Plant Mol. Biol. 13: 731–733

    Article  PubMed  CAS  Google Scholar 

  • Chuntapa, B., Powtongsook, S. and Menasveta, P. (2003). Water quality control using Spirulina platensis in shrimp culture tanks. Aquaculture. 220: 355–366

    Article  CAS  Google Scholar 

  • Glazier, S.A., Campbell, E.R. and Campbell, W.H. (1998). Construction and characterization of nitrate reductase-based amperometric electrode and nitrate assay of fertilizers and drinking water. Anal. Chem. 70(8): 1511–1515

    Article  PubMed  CAS  Google Scholar 

  • Goto, S., Akagawa, T., Kojima, S., Hayakawa, T. and Yamaya, T. (1998). Organization and structure of NADH-dependent glutamate synthase gene from rice plants. Biochim. Biophys. Acta 1387: 298–308

    PubMed  CAS  Google Scholar 

  • Jha, P., Ali, A. and Raghuram, N. (2007). Nitrate induction of nitrate reductase and its inhibition by nitrite and ammonium ions in Spirulina plantensis. Physiol. Mol. Biol. Plants 13(2): 163–167

    CAS  Google Scholar 

  • Kim, M.H., Chung, W.T., Lee, M.K., Lee, J.Y., Ohh, S.J., Lee, J.H., Park, D.H., Kim, D.J. and Lee, H.Y. (2000). Kinetics of removing nitrogenous and phosphorous compounds from swine waste by growth of microalga, Spirulina platensis. J. Microbiol. Biotechnol. 10(4): 455–461

    CAS  Google Scholar 

  • Kronzucker, H.J., Glass, A.D.M., Siddiqi, M.Y. and Kirk, G.J.D. (2000). Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytol. 145: 471–476

    Article  CAS  Google Scholar 

  • Lam, H.M., Coshigano, K., Oliveira, I., Melo-Oliveira, R. and Coruzzi, G. (1996). The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 569–593

    Article  PubMed  CAS  Google Scholar 

  • Lochab, S., Pathak, R.R. and Raghuram, N. (2007). Molecular approaches for enhancement of nitrogen use efficiency in plants. In: Agricultural Nitrogen use & its Environmental Implications (Eds. Abrol, Y.P., Raghuram, N. and Sachdev, M.S.) IK International, Delhi, pp. 327–350

    Google Scholar 

  • Lodi, A., Binaghi, L., Solisio, C., Converti, A. and Del Borghi, M. (2003). Nitrate and phosphate removal by Spirulina platensis. J. Ind. Microbiol. Biotechnol. 30: 656–660

    Article  PubMed  CAS  Google Scholar 

  • Miflin, B.J. and Habash, D.J. (2002). The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in nitrogen utilization of crops. J. Exp. Bot. 53: 979–987

    Article  PubMed  CAS  Google Scholar 

  • Raghuram, N., Pathak, R.R. and Sharma, P. (2006). Signalling and the molecular aspects of N-Use-Efficiency in higher plants. In: Biotechnological approaches to improve nitrogen use efficiency in plants (Eds. Singh, R. P. and Jaiwal, P.K.) Studium Press LLC, Houston, Texas, USA, pp. 19–40

    Google Scholar 

  • Sakamoto, A., Ogawa, M., Masumura, T., Shibata, D., Takeba, G., Tanaka, K. and Fujii, S. (1989). Three cDNA sequences coding for glutamine synthetase polypeptide in Oryza sativa L. Plant Mol. Biol. 13(5): 611–614

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, B.M. and Stadtman, E.R. (1970). Glutamine Synthetase (Escherichia coli). In: Methods in Enzymology, Academic Press, New York, Vol. 17, pp. 910–922

    Google Scholar 

  • Singh, D.P. and Singh, N. (2000). Calcium and phosphate regulation of nitrogen metabolism in the cyanobacterium Spirulina platensis under high light stress. Curr. Microbiol. 41: 368–363

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M., Muller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Scheible, W.R. and Krapp, A. (2002). Steps towards an integrated view of N metabolism. J. Exp. Bot. 53: 959–970

    Article  PubMed  CAS  Google Scholar 

  • Vonshak, A. (1997). Spirulina platensis (Arthrospira): Physiology, Cell-biology, and Biotechnology. Taylor and Francis, London

    Google Scholar 

  • Yabuki, Y., Mori, E. and Tamura, G. (1985). Nitrite reductase in the cyanobacterium Spirulina platensis; Agric. Biol. Chem. 49: 3061–3062

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandula Raghuram.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12298-009-0022-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A., Jha, P., Sandhu, K.S. et al. Spirulina nitrate-assimilating enzymes (NR, NiR, GS) have higher specific activities and are more stable than those of rice. Physiol Mol Biol Plants 14, 179–182 (2008). https://doi.org/10.1007/s12298-008-0017-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0017-z

Key words

Navigation