Skip to main content
Log in

Genotyping and Frequency of PCSK9 Variations Among Hypercholesterolemic and Diabetic Subjects

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Non-synonymous single-nucleotide polymorphism (SNPs) in the gene for proprotein convertase subtilisin/kexin type 9 (PCSK9) can influence cholesterol and glucose metabolism, leading to increased risk of cardiovascular disease and diabetes. To determine the frequency of four common PCSK9 SNPs, L10Ins, A56V, I474V, and E670G, in a population sample (n = 98) of the Hail region of Kingdom of Saudi Arabia. Blood was collected from participants; serum cholesterol, blood glucose and glycated hemoglobin were determined; genomic DNA was extracted and PCR amplicons from SNP-containing PCSK9 exons were subjected to Sanger sequencing. Out of 98 participants. 10 (10.20%) carried none of the SNPs, 2 (2.04%) the L10ins/A56V linked SNPs, 35 (35.71%) the I474V SNP, 22 (22.45%) both the I474V and E670G SNPs, and 29 (29.59%) the E670G SNP. Of the 30 eucholesterolemic diabetics patients, 11 (36.66%) carried the I474V SNP, 10 (33.33%) the E679G SNP and 6 (20%) the I474V/E679G. SNPs. Of 63 diabetic patients, 26 (41.26%) carry I474V SNP and 22 (34.92%) carry E670G SNP. Our data demonstrated that the I474V and E670G PCSK9 variants are very frequent in the Hail region of Saudi Arabia and are found at even higher frequency among diabetics. Further investigations are needed to determine whether these variations or another variant segregating with them can explain its apparent association with diabetes in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADH:

Autosomal dominant hypercholesterolemia

CAD:

Coronary artery disease

GOF:

Gain of function

LDL-C:

Low-density lipoprotein-cholesterol

LDLR:

Low-density lipoprotein receptor

LOF:

Loss of function

PCSK9:

Proprotein convertase subtilisin/kexin type 9

SNP:

Single-nucleotide polymorphism

FBG:

Fasting blood glucose

HbA1c:

Glycated hemoglobin

References

  1. Mbikay M, Mayne J, Chretien M. Proprotein convertases subtilisin/kexin type 9, an enzyme turned escort protein: hepatic and extra hepatic functions. J Diabetes. 2013;5:391–405.

    Article  CAS  Google Scholar 

  2. Goldstein JL, Brown MS. The LDL receptor Arterioscler. Thromb Vasc Biol. 2009;29:431–8.

    Article  CAS  Google Scholar 

  3. Seidah NG, Awan Z, Chretien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.

    Article  CAS  Google Scholar 

  4. Cnop M, Hannaert JC, Grupping AY, Pipeleers DG. Low density lipoprotein can cause death of islet beta-cells by its cellular uptake and oxidative modification. Endocrinology. 2002;143:3449–53.

    Article  CAS  Google Scholar 

  5. Grupping AY, Cnop M, Van Schravendijk CF, Hannaert JC, Van Berkel TJ, Pipeleers DG. Low density lipoprotein binding and uptake by human and rat islet beta cells. Endocrinology. 1997;138:4064–8.

    Article  CAS  Google Scholar 

  6. Rutti S, Ehses JA, Sibler RA, Prazak R, Rohrer L, Georgopoulos S, et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology. 2009;150:4521–30.

    Article  CAS  Google Scholar 

  7. Mbikay M, Sirois F, Mayne J, Wang GS, Chen A, Dewpura T, et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 2010;584:701–6.

    Article  CAS  Google Scholar 

  8. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  CAS  Google Scholar 

  9. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  CAS  Google Scholar 

  10. Lambert G, Ancellin N, Charlton F, Comas D, Pilot J, Keech A, et al. Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem. 2008;54:1038–45.

    Article  CAS  Google Scholar 

  11. Mayne J, Raymond A, Chaplin A, Cousins M, Kaefer N, Gyamera-Acheampong C, et al. Plasma PCSK9 levels correlate with cholesterol in men but not in women. Biochem Biophys Res Commun. 2007;361:451–6.

    Article  CAS  Google Scholar 

  12. Lakoski SG, Lagace TA, Cohen JC, Horton JD, Hobbs HH. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab. 2009;94:2537–43.

    Article  CAS  Google Scholar 

  13. Cui Q, Ju X, Yang T, Zhang M, Tang W, Chen Q, et al. Serum PCSK9 is associated with multiple metabolic factors in a large Han Chinese population. Atherosclerosis. 2010;213:632–6.

    Article  CAS  Google Scholar 

  14. Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–53.

    Article  CAS  Google Scholar 

  15. Lotta LA, Sharp SJ, Burgess S, Perry JR, Stewart ID, Willems SM, et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316:1383–91.

    Article  CAS  Google Scholar 

  16. Hasona NA. Significance of cardiac and iron profile alteration in diabetic patients. Comp Clin Pathol. 2017;26:951. https://doi.org/10.1007/s00580-017-2470-y.

    Article  CAS  Google Scholar 

  17. Hasona NA, Elasbali A. Evaluation of electrolytes imbalance and dyslipidemia in diabetic patients. Med Sci. 2016;4(2):7.

    Google Scholar 

  18. Nuglozeh E, Hasona NA. Co-segregation of PCSK9 gene I474V variant with diabetic and hypercholesterolemic subjects. Int J Med Res Health Sci. 2017;6(6):100–5.

    Google Scholar 

  19. Hasona NA, Altraifi MA, Alammari SA, Alshammari RR, Alluhaybi AF. Evaluation of magnesium level and its correlation with other biochemical markers among type-2 diabetic participants. Int J Med Res Health Sci. 2018;7(5):23–8.

    Google Scholar 

  20. Fluckiger R, Winterhalter KH. In vitro synthesis of HbA1C. FEBS Lett. 1976;71:356–60.

    Article  CAS  Google Scholar 

  21. Kotowski IK, Pertsemlidis A, Luke A, Cooper RS, Vega GL, Cohen JC, et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet. 2006;78:410–22.

    Article  CAS  Google Scholar 

  22. Mayne J, Ooi TC, Raymond A, Cousins M, Bernier L, Dewpura T, et al. Differential effects of PCSK9 loss of function variants on serum lipid and PCSK9 levels in Caucasian and African Canadian populations. Lipids Health Dis. 2013;12:70.

    Article  CAS  Google Scholar 

  23. Anderson JM, Cerda A, Hirata MH, Rodrigues AC, Dorea EL, Bernik MM, et al. Influence of PCSK9 polymorphisms on plasma lipids and response to atorvastatin treatment in Brazilian subjects. J Clin Lipidol. 2014;8:256–64.

    Article  Google Scholar 

  24. Al-Waili K, Al-Zidi WA, Al-Abri AR, Al-Rasadi K, Al-Sabti HA, Shah K, et al. Mutation in the PCSK9 gene in Omani Arab subjects with autosomal dominant hypercholesterolemia and its effect on PCSK9 protein structure. Oman Med J. 2013;28:48–52.

    Article  Google Scholar 

  25. Lin Y, Meng Y, Zheng W, Liu Z. Research on the correlation of PCSK9 gene I474V polymorphism with coronary artery disease. Lab Med. 2012;5:028.

    Google Scholar 

  26. Miyake Y, Kimura R, Kokubo Y, Okayama A, Tomoike H, Yamamura T, et al. Genetic variants in PCSK9 in the Japanese population: rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis. 2008;196:29–36.

    Article  CAS  Google Scholar 

  27. Yue P, Averna M, Lin X, Schonfeld G. The c.43_44insCTG variation in PCSK9 is associated with low plasma LDL-cholesterol in a Caucasian population. Hum Mutat. 2006;27:460–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by UOH. The authors thank Prof Majambu Mbikay of the Ottawa Hospital Research Institute for his critical review this manuscript before its submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edem Nuglozeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuglozeh, E., Fazaludeen, M.F., Hasona, N. et al. Genotyping and Frequency of PCSK9 Variations Among Hypercholesterolemic and Diabetic Subjects. Ind J Clin Biochem 34, 444–450 (2019). https://doi.org/10.1007/s12291-018-0763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-018-0763-9

Keywords

Navigation