Skip to main content
Log in

Abdominal Obesity Associated with Elevated Serum Butyrylcholinesterase Activity, Insulin Resistance and Reduced High Density Lipoprotein-Cholesterol Levels

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Abdominal obesity (AO) has a strong correlation with cardiovascular disease and has been linked to Alzheimer’s disease and type 2 diabetes. We investigated the association between AO and elevated serum butyrylcholinesterase (BChE) activity, insulin resistance and the serum lipid profile, including triglyceride (TG), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C) levels in AO and non-AO women subjects. A total of 500 AO subjects (age 49.1 ± 10.5 years), and 142 non-AO women subjects (age 49.9 ± 11.9 years) were enrolled for the general biochemistry tests, serum BChE, fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR). Body mass index, waist circumference, Blood pressure (BP), plasma glucose (Glu), triglyceride (TG), BChE, insulin, HOMA-IR were significantly higher and HDL-C levels were significantly lower in AO subjects (p < 0.05). Waist circumference was significantly correlated with BP, Glu, TG, BChE, insulin and HOMA-IR in AO subjects. Multiple logistic regression demonstrated that AO was associated with elevated BChE, HOMA-IR, hypertension and reduced HDL-C after adjusting for these variables. AO is associated with elevated BChE, insulin resistance, HT and reduced HDL-C. These may predict the development of type 2 diabetes mellitus and may be associated with cognitive disorder in the future, both are mediated through insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  2. Anjana M, Sandeep S, Deepa R, Vimaleswaran KS, Farooq S, Mohan V. Visceral and central abdominal fat and anthropometry in relation to diabetes in Asian Indian. Diabetes Care. 2004;27:2948–53.

    Article  PubMed  Google Scholar 

  3. Razay G, Vreugdenhil A, Wilcock G. Obesity, abdominal obesity and Alzheimer disease. Dement Geriatr Cogn Disord. 2006;22:173–6.

    Article  PubMed  Google Scholar 

  4. Massoulie´ J, Pezzementi L, Bom S, Krejci E. Molecular and cellular biology of cholinesterase. Prog Neurobiol. 1993;41:31–41.

    Article  PubMed  Google Scholar 

  5. Silver A. The biology of cholinesterase. Amsterdam’North Holland Publishing Co, 1974. pp. 443– 9.

  6. Muller TC, Rocha JB, Morsch VM, Neis RT, Schetinger MR. Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity. Biochim Biophys Acta. 2002;1587:92–8.

    Article  CAS  PubMed  Google Scholar 

  7. Lockridge O. Structure of human serum cholinesterase. Bioessays. 1988;9:125–8.

    Article  CAS  PubMed  Google Scholar 

  8. Degenhardt CE, Pleijsier K, van der Schans MJ, Langenberg JP, Preston KE, Solano MI, et al. Improvements of the fluoride reactivation method for the verification of nerve agent exposure. J Anal Toxicol. 2004;28:364–71.

    Article  CAS  PubMed  Google Scholar 

  9. Chu MI, Fontaine P, Kutty KM, Murphy D, Redheendran R. Cholinesterase in serum and low density lipoprotein of hyperlipidemic patients. Clin Chim Acta. 1978;85:55–9.

    Article  CAS  PubMed  Google Scholar 

  10. Jain R, Kutty KM, Huang SN, Kean K. Pseudocholinesterase/high-density lipoprotein cholesterol ratio in serum of normal persons and of hyperlipoproteinemics. Clin Chem. 1983;29:1031–3.

    CAS  PubMed  Google Scholar 

  11. Hashim Y, Shepherd D, Wiltshire S, Holman RR, Levy JC, Clark A, et al. Butyrylcholinesterase K variant on chromosome 3 q is associated with type II diabetes in white Caucasian subjects. Diabetologia. 2001;44:2227–30.

    Article  CAS  PubMed  Google Scholar 

  12. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome–a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23:469–80.

    Article  CAS  PubMed  Google Scholar 

  13. Joint National Committee. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med. 1997;157:2413–46.

    Article  Google Scholar 

  14. World Health Organization-International Society of Hypertension. World Health Organization-International Society of Hypertension Guidelines for the management of hypertension. Guidelines Subcommittee. J Hypertens. 1999;1999(17):151–83.

    Google Scholar 

  15. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  PubMed  Google Scholar 

  16. Haffner SM, Kennedy E, Gonzalez C, Stern MP, Miettinen H. A prospective analysis of the HOMA model.The Mexico City Diabetes Study. Diabetes Care. 1996;19:1138–41.

    Article  CAS  PubMed  Google Scholar 

  17. Duncan MH, Singh BM, Wise PH, Carter G, Alaghband-Zadeh J. A simple measure of insulin resistance. Lancet. 1995;346:120–1.

    Article  CAS  PubMed  Google Scholar 

  18. Fatani S, Pickavance LC, Sadler CJ, et al. Differential vascular dysfunction in response to diets of differing macronutrient composition: a phenomenonological study. Nutr Metab (Lond). 2007;4:15.

    Article  Google Scholar 

  19. Naderali EK, Fatani S. The effects of fenofibrate on metabolic and vascular changes induced by chocolate supplemented diet in the rat. Eur J Pharmacol. 2005;521:99–104.

    Article  CAS  PubMed  Google Scholar 

  20. Steinberg HO, Chacker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance. J Clin Invest. 1996;97:2601–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Boberg DR, Furtado-Alle L, Souza RL, Chautard-Freire-Maia EA. Molecular forms of butyrylcholinesterase and obesity. Genet Mol Biol. 2010;33:452–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sato KK, Hayashi T, Maeda I, Koh H, Harita N, Uehara S, et al. Serum butyrylcholinesterase and the risk of future type 2 diabetes: the Kansai Healthcare Study. Clin Endocrinol. 2014;80:362–7.

    Article  CAS  Google Scholar 

  23. Kalman J, Juhasz A, Rakonczay Z, Abraham G, Zana M, Boda K, et al. Increased serum butyrylcholinesterase activity in type IIb hyperlipidaemic patients. Life Sci. 2004;75:1195–204.

    Article  CAS  PubMed  Google Scholar 

  24. Cocuianu M. Serum gamma-glutamyltransferase and/or serum cholinesterase as markers of the metabolic syndrome. Diabetes Care. 1999;22:1381–2.

    Article  Google Scholar 

  25. Alcantara VM, Chautard-Friere-Maia EA, Scartezini M, et al. Butyrylcholinesterase activity and risk factors for coronary artery disease. Scand J Clin Lab Invest. 2002;62:399–404.

    Article  CAS  PubMed  Google Scholar 

  26. Randell EW, Rogers B, Smith E. Production of butyrylcholinesterase by Caco-2 cells: lack of relationship with triglyceride production. Cell Mol Life Sci. 2001;58:1327–32.

    Article  CAS  PubMed  Google Scholar 

  27. Lloyd LJ, Langley-Evans SC, McMullen S. Childhood obesity and adult cardiovascular disease risk: a systematic review. Int J Obes (Lond). 2010;34:18–28.

    Article  CAS  Google Scholar 

  28. Rao AA, Sridhar GR, Das UN. Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Med Hypotheses. 2007;69:213–6.

    Article  Google Scholar 

  29. Watson GS, Craft S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol. 2004;490:97–113.

    Article  CAS  PubMed  Google Scholar 

  30. Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs. 2003;17:27–45.

    Article  CAS  PubMed  Google Scholar 

  31. Grossman H. Does diabetes protect or provoke Alzheimer’s disease? Insights into the pathobiology and future treatment of Alzheimer’s disease. CNS Spectr. 2003;8:815–23.

    PubMed  Google Scholar 

  32. Craft S, Reger MA, Baker LD. Insulin resistance in Alzheimer’s disease—a novel therapeutic target. In: Gauthier S, Scheltens P, Cummings JL, editors. Alzheimer’s disease and related disorders annual. London: Taylor and Francis; 2006. p. 111–33.

    Google Scholar 

  33. Rao AA, Siva Reddy C, Sridhar GR, Annapurna A, Hanuman T, Prameela M, et al. Enhanced butyrylcholinesterase activity may be the common link in triggering low-grade systemic inflammation and decrease in cognitive function in diabetes mellitus and Alzheimer’s disease. Curr Nutr Food Sci. 2008;4:213–6.

    Article  CAS  Google Scholar 

  34. Lane R, Farlow M. Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer’s disease. J Lipid Res. 2005;46:949–68.

    Article  CAS  PubMed  Google Scholar 

  35. Lane R, Feldman HH, Meyer J, He Y, Ferris SH, Nordberg A, et al. Synergistic effect of apolipoprotein E 34 and butyrylcholinesterase K-variant on progression from mild cognitive impairment to Alzheimer’s disease. Pharmacogenet Genomics. 2008;18:289–98.

    Article  CAS  PubMed  Google Scholar 

  36. Lane RM, He Y. Emerging hypotheses regarding the influences of butyrylcholinesterase-K variant, APOE epsilon 4, and hyperhomocysteinemia in neurodegenerative dementias. Med Hypotheses. 2009;73:230–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Naresuan University and National Health Security Office (NHSO), Region 3’s Blog (Nakornsawan) for financial support and all co-workers of the SaiNgam Health Promotion Hospitals for their blood collection and technical assistance. We especially thank those who participated and donated blood samples for this study. Finally we sincerely thank Asst. Prof. Dr. Ronald A. Markwardt, Faculty of Public Health, Burapha University, for his critical reading and correcting of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surapon Tangvarasittichai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tangvarasittichai, S., Pongthaisong, S., Meemark, S. et al. Abdominal Obesity Associated with Elevated Serum Butyrylcholinesterase Activity, Insulin Resistance and Reduced High Density Lipoprotein-Cholesterol Levels. Ind J Clin Biochem 30, 275–280 (2015). https://doi.org/10.1007/s12291-014-0443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-014-0443-3

Keywords

Navigation