Skip to main content

Advertisement

Log in

Association Between Urinary IgG and Relative Risk for Factors Affecting Proteinuria in Type 2 Diabetic Patients

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Abnormal glomerular permeability is the primary step towards the glomerulosclerosis. The progression rate of glomerulosclerosis is proportionate to abundance and severity of lesions created at incipient stage, which is reflected as proteinuria even though eGFR remains in the normal range. Therefore, there is a current need to find out the association between relative risks for the factors leading to proteinuria. The relations could be more informative, if it is with respect to the macromolecules like “IgG” excretion in urine. Type 2 diabetic patients were selected for this study with eGFR > 75 ml/min/1.73 m2 and grouped into four quartiles based on UIgGCR. The markers of key factors affecting progression of proteinuria were estimated through biochemical tests. The impact of these markers on proteinuria was accessed by applying multinomial logistic regression. The adjusted odds ratio for the UGAGCR was 1.186 (95 % CI: 1.061–1.327) P < 0.003 in highest quartiles of UIgGCR, followed by odds ratio for markers of collagen catabolism 1.051 (95 % CI: 1.025–1.079) P < 0.001, and USACR 1.044 (95 % CI: 1.013–1.077) P < 0.006 respectively. The marker of glycation, i.e., glycated hemoglobin showed the highest odds ratio 5.449 (95 % CI: 1.132–26.236) P < 0.035. In addition, odds for the systolic blood pressure was observed 1.387 (95 % CI: 1.124–1.712) P < 0.002. The higher odds inform and could help to discriminate the diabetic patients with fast progressive diabetic nephropathy. The study describes critical relationship between the urinary excretion of IgG and factors leading to proteinuria in type 2 diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UGAGCR:

Urinary glycosaminoglycan creatinine ratio

UHPCR:

Urinary hydroxi-proline creatinine ratio

USACR:

Urinary sialic acid creatinine ratio

UIgGCR:

Urinary IgG creatinine ratio

References

  1. Vupputuri S, Nichols GA, Lau H, Joski P, Thorp ML. Risk of progression of nephropathy in a population-based sample with type 2 diabetes. Diabetes Res Clin Pract. 2011;91:246–52.

    Article  PubMed  CAS  Google Scholar 

  2. Diamond J. Diabetes in India. Nature. 2011;469:478–9.

    Article  PubMed  CAS  Google Scholar 

  3. Dave GS, Kalia K. Hyperglycemia induced oxidative stress in type-1 and type-2 diabetic patients with and without nephropathy. Cell Mol Biol. 2007;53(5):68–78.

    PubMed  CAS  Google Scholar 

  4. Dave GS, Kalia K. Hyperglycemia, reactive oxygen species and pathophysiology of diabetic nephropathy. J Cell Tissue Res. 2008;8(2):1367–77.

    CAS  Google Scholar 

  5. Deckert T, Feldt-Rasmussen B, Burch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia. 1989;32:219–26.

    Article  PubMed  CAS  Google Scholar 

  6. Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol. 2007;18:2885–93.

    Article  PubMed  CAS  Google Scholar 

  7. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.

    Article  PubMed  CAS  Google Scholar 

  8. Varki A. Sialic acids in human health and disease. Trends Mol Med. 2008;14(8):351–60.

    Article  PubMed  CAS  Google Scholar 

  9. Constantinescu AA, Vink H, Spaan JAE. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol. 2003;23:1541–7.

    Article  PubMed  CAS  Google Scholar 

  10. Soedamah-Muthu SS, Chaturvedi N, Pickup JC, Fuller JH. Relationship between plasma sialic acid and fibrinogen concentration and incident micro- and macrovascular complications in type 1 diabetes. The EURODIAB Prospective Complications Study (PCS). Diabetologia. 2008;51:493–501.

    Article  PubMed  CAS  Google Scholar 

  11. Araki SI, Haneda M, Koya D, Isshiki K, Kume S, Sugimoto T, et al. Association between urinary type IV collagen level and deterioration of renal function in type 2 diabetic patients without overt proteinuria. Diabetes Care. 2010;33:1805–10.

    Article  PubMed  CAS  Google Scholar 

  12. Meilman E, Urivetzky MM, Rapoport CM. Urinary hydroxiproline peptides. J Clin Invest. 1963;42(1):40–50.

    Article  PubMed  CAS  Google Scholar 

  13. Bakoush O, Tencer J, Tapia J, Rippe B, Torffvit O. Higher urinary IgM excretion in type 2 diabetic nephropathy compared to type 1 diabetic nephropathy. Kidney Int. 2002;61:203–8.

    Article  PubMed  CAS  Google Scholar 

  14. Shankland SJ. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 2006;69:2131–47.

    Article  PubMed  CAS  Google Scholar 

  15. Mistry K, Kalia K. Non enzymatic glycosylation of IgG and their urinary excretion in patients with diabetic nephropathy. Indian J Clin Biochem. 2008;23(3):159–65.

    Google Scholar 

  16. Lewis EJ, Xu X. Abnormal glomerular permeability characteristics in diabetic nephropathy. Diabetes Care. 2008;31(Suppl. 2):S202–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kuwabara A, Satoh M, Tomita N, Sasaki T. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia. 2010;53:2056–65.

    Article  PubMed  CAS  Google Scholar 

  18. Haraldsson B, Nystrom J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev. 2008;88:451–87.

    Article  PubMed  CAS  Google Scholar 

  19. Danziger J. Importance of low-grade albuminuria. Mayo Clin Proc. 2008;83(7):806–12.

    Article  PubMed  Google Scholar 

  20. Kroll MH, Chesler R, Hagengruber C, Blank DW, Kestner J, Rawe M. Automated determination of urinary creatinine without sample dilution: theory and practice. Clin Chem. 1986;32:446–52.

    PubMed  CAS  Google Scholar 

  21. Chandalia HB, Sadikot S, Bhargav DK, Krishnaswamy PR. Estimation of glycosylated hemoglobins by a simple chemical method and its use in monitoring control of diabetes mellitus. J Assoc Physicians India. 1980;28(9):285–6.

    PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    PubMed  CAS  Google Scholar 

  23. Siddiqi NJ, Alhomida AS. Distribution of total, free, peptide-bound and protein-bound hydroxyproline in the erythrocytes from different species. Comp Clin Path. 2002;11:123–8.

    Article  CAS  Google Scholar 

  24. Skoza L, Mohos S. Stable thiobarituric acid chromophore with dimethyl sulphoxide. Biochem J. 1976;159:457–62.

    PubMed  CAS  Google Scholar 

  25. De Jong JGN, Wevers RA, Laarakkers C, Poorthuis JHM. Dimethylmethylene blue-based spectrophotometry of glycosaminoglycans in untreated urine: a rapid screening procedure for mucopolysaccharidoses. Clin Chem. 1989;35(7):1472–7.

    PubMed  Google Scholar 

  26. Singh NP, Ingle GK, Saini VK, Jami A, Beniwal P, Lal M, Meena GS. Prevalence of low glomerular filtration rate, proteinuria and associated risk factors in north India using Cockcroft-Gault and modification of diet in renal disease equation: an observational, cross-sectional study. BMC Nephrol. 2009;10(4):1–13.

    CAS  Google Scholar 

  27. Vaughan MR, Quaggin SE. How do mesangial and endothelial cells form the glomerular tuft? J Am Soc Nephrol. 2008;19:24–33.

    Article  PubMed  Google Scholar 

  28. Tryggvason K, Wartiovaara J. How does the kidney filter plasma? Physilogy. 2005;20:96–101.

    Article  Google Scholar 

  29. Ballermann BJ. Resolved: capillary endothelium is a major contributor to the glomerular filtration barrier. J Am Soc Nephrol. 2007;18:2432–8.

    Article  PubMed  Google Scholar 

  30. White KE, Bilous RW. Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol Dial Transplant. 2004;19:1437–40.

    Article  PubMed  Google Scholar 

  31. Nieuwdrop M, Mooij HL, Kroon J, Atasever B, Spaan JAE, Ince C, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006;55:1127–32.

    Article  Google Scholar 

  32. Torffvit O, Rippe B. Size and charge selectivity of the glomerular filter in patients with insulin-dependent diabetes mellitus: urinary immunoglobulins and glycosaminoglycans. Nephron. 1999;83:301–7.

    Article  PubMed  CAS  Google Scholar 

  33. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57:1349–54.

    Article  PubMed  CAS  Google Scholar 

  34. Kado S, Aoki A, Wada S, Katayama Y, Kugai N, Yoshizawa N, Nagata N. Urinary type IV collagen as a marker for early diabetic nephropathy. Diabetes Res Clin Pract. 1996;31:103–8.

    Article  PubMed  CAS  Google Scholar 

  35. Wohlfarth V, Drumm K, Mildenberger S, Freudinger R, Gekle M. Protein uptake disturbs collagen homeostasis in proximal. Kidney Int. 2003;63(Suppl 84):S103–9.

    Article  Google Scholar 

  36. Tervaert TWC, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–63. doi:10.1681/ASN.2010010010.

    Article  PubMed  Google Scholar 

  37. Schrijvers BF, DeVriese AS, Flyvbjerg A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocrine Rev. 2004;25:971–1010.

    Article  CAS  Google Scholar 

  38. Wang SN, LaPage J, Hirschberg R. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int. 2000;57:1002–14.

    Article  PubMed  CAS  Google Scholar 

  39. Abrahamson DR, Hudson BG, Stroganova L, Borza DB, John PL. Cellular origins of type IV collagen networks in developing glomeruli. J Am Soc Nephrol. 2009;20:1471–9.

    Article  PubMed  CAS  Google Scholar 

  40. Aumailley M, Timpl R. Attachment of cells to basement membrane collagen type IV. J Cell Biol. 1986;103:1569–75.

    Article  PubMed  CAS  Google Scholar 

  41. Javaid B, Olson JL, Meyer TW. Glomerular injury and tubular loss in adriamycinnephrosis. J Am Soc Nephrol. 2001;12:1391–400.

    PubMed  CAS  Google Scholar 

  42. Monteleone G, Cristina G, Parrello T, Morano S, Biancone L, Pietravalle P, et al. Altered IgG4 renal clearance in patient with inflammatory bowel disease. Evidence for a subclinical impairment of protein charge renal selectivity. Nephrol Dial Transplant. 2000;15:498–501.

    Article  PubMed  CAS  Google Scholar 

  43. Sarav M, Wang Y, Hack BK, Chang A, Jensen M, Bao L, Quigg RJ. Renal FcRn reclaims albumin but facilitates elimination of IgG. J Am Soc Nephrol. 2009;20:1941–52.

    Article  PubMed  CAS  Google Scholar 

  44. Liu F, Brezniceanu ML, Wei CC, Chenier I, Sachetelli S, Zhang SL, et al. Overexpression of angiotensinogen increases tubular apoptosis in diabetes. Am Soc Nephrol. 2008;19:269–80.

    Article  Google Scholar 

  45. Wang PX, Sanders PW. Immunoglobulin light chains generate hydrogen peroxide. J Am Soc Nephrol. 2007;18:1239–45.

    Article  PubMed  CAS  Google Scholar 

  46. Kalia K, Sharma S, Mistry K. Non-enzymatic glycation of immunoglobulins in diabetic nephropathy. Clin Chem Acta. 2004;347:169–76.

    Article  CAS  Google Scholar 

  47. Bloomgarden ZT. Blood pressure and diabetic nephropathy. Diabetes Care. 2010;33(3):e30–5.

    Article  PubMed  Google Scholar 

  48. Lemley KV, Abdullah I, Myers BD, Meyer TW, Blouch K, Smith WE, et al. Evolution of incipient nephropathy in type 2 diabetes mellitus. Kidney Int. 2000;58:1228–37.

    Article  PubMed  CAS  Google Scholar 

  49. Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53:2646–55.

    Article  PubMed  CAS  Google Scholar 

  50. Gambaro G, Woude FJVD. Glycosaminoglycans: use in treatment of diabetic nephropathy. J Am Soc Nephrol. 2000;11:359–68.

    PubMed  CAS  Google Scholar 

  51. Gambaro G, Kinalska I, Oksa A, Pont’uch P, Hertlova M, Olsovsky J, et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J Am Soc Nephrol. 2002;13:1615–25.

    Article  PubMed  CAS  Google Scholar 

  52. O’Connor AS, Schelling JR. Corecurriculum in nephrology: diabetes and the kidney. Am J Kidney Dis. 2005;46(4):766–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge to the Gujarat State Biotechnology Mission (GSBTM), Gujarat, India, and UGC, New Delhi, India, for providing financial assistance. We are thankful to Prof. Arvind Pandey (Director), Institute for Research in Medical Statistics (ICMR), New Delhi, India, for their assistance in statistical analysis; of lastly, we are thankful to every person who has co-operated with us on this research project.

Conflict of interest

The authors stated that there are no conflicts of interest regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Kalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, S., Kalia, K. & Mannari, J. Association Between Urinary IgG and Relative Risk for Factors Affecting Proteinuria in Type 2 Diabetic Patients. Ind J Clin Biochem 27, 333–339 (2012). https://doi.org/10.1007/s12291-012-0227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-012-0227-6

Keywords

Navigation