Skip to main content

Advertisement

Log in

Antidiabetic and ameliorative potential of Ficus bengalensis bark extract in streptozotocin induced diabetic rats

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the antidiabetic and ameliorative potential of aqueous extract of Ficus bengalensis bark in streptozotocin induced diabetic rats. The effect of oral administration of aqueous extract of F. bengalensis bark on blood glucose, serum electrolytes, serum glycolytic enzymes, liver microsomal protein, hepatic cytochrome P-450 dependent monooxygenase enzymes and lipid peroxidation in liver and kidney of streptozotocin -induced diabetic rats was studied. Oral administration of Ficus bengalensis to fed, fasted and glucose loaded diabetic rats significantly [F > 0.05 (ANOVA) and P< 0.05 (DMRT)] decreased the blood glucose level at 5 hrs and restored the levels of serum electrolytes, glycolytic enzymes and hepatic cytochrome P-450 dependent enzyme systems and decreased the formation of liver and kidney lipid peroxides at the end of 12 weeks. Further, the aqueous extract of Ficus bengalensis at a dose of 500mg/kg/day exhibits significant antidiabetic and ameliorative activity as evidenced by histological studies in normal and Ficus bengalensis treated streptozotocin induced diabetic rats. On the basis of our findings, it could be used as an antidiabetic and ameliorative agent for better management of diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harrower AD. Comparison of efficacy, secondary failure rate, and complications of sulfonylureas. J Diabetes Complications 1994; 8: 201–203.

    Article  PubMed  CAS  Google Scholar 

  2. Reuser AJ, Wisselaar HA. An evaluation of the potential side-effects of alpha-glucosidase inhibitors used for the management of diabetes mellitus. Euro J Clin Invest 1994; 24: 19–24.

    CAS  Google Scholar 

  3. Campbell RK, White JR, Saulie BA. Metformin: a new oral biguanide. Clin Therapeutics 1996; 18: 360–371.

    Article  CAS  Google Scholar 

  4. Mosh MJ. Current and future prospectus of integrating traditional and alternative medicine in the management of diseases in Tanzania. Tanzan Health Res Bull 2005; 7: 159–167.

    Google Scholar 

  5. Srinivasan K. Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts. Intl J Food Sci Nutrl 2005; 56: 399–414.

    Article  CAS  Google Scholar 

  6. Satyavati GV, Raina MK, Sharma M. (Eds.) Medicinal plants of India, Vol.1. Indian Council of Medical Research, New Delhi, 1976.

    Google Scholar 

  7. Shrotri DS, Aiman R. The relationship of the post absorptive state to the hypoglycaemic action studies on Ficus bengalensis. Ind J Med Res 1960; 48: 162–163.

    CAS  Google Scholar 

  8. Vohra SB, Parasar GC. Antidiabetic studies on Ficus bengalensis Linn. Ind J Pharm 1970; 32: 68–69.

    Google Scholar 

  9. Shukla R, Prabhu KM, Murthy PS. Hypoglycaemic effect of the water extract of Ficus bengalensis in alloxan recovered, mildly diabetic and severely diabetic rabbits. Intl J Diabetes Dev Count 1994; 14: 78–81.

    Google Scholar 

  10. Shukla R, Anand K, Prabhu KM, Murthy PS. Hypocholesterolemic effect of water extract of the bark of Banyan tree, Ficus bengalensis. Ind J Clin Biochem 1995; 10: 14–18.

    Article  Google Scholar 

  11. Shukla R, Gupta S, Gambhir JK, Prabhu KM, Murthy PS. Antioxidant effect of aqueous extract of the bark of Ficus bengalensis in hypercholestralemic rabbits. J Ethnopharmacol 2004; 92:47–51.

    Article  PubMed  Google Scholar 

  12. Subramanian PM, Misra GS, Chemical constituents of Ficus bengalensis (Part II) Pol J Pharmacol 1978; 30: 559–562.

    CAS  Google Scholar 

  13. Kumar RV, Augusti KT. Antidiabetic effect of a leucocyanidin derivative isolated from the bark of Ficus bengalensis Linn. Ind J Biochem Biophys 1989; 26: 400–404.

    CAS  Google Scholar 

  14. Cherian S, Augusti KT. Antidiabetic effect of glycoside of leucopelargonidin isolated from Ficus bengalensis Linn. Ind J Exp Biol 1993; 31: 26–29.

    CAS  Google Scholar 

  15. Sarkar S, Pranava M, Marita RA. Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes. Pharmacol Res 1996; 33: 1–4.

    Article  PubMed  CAS  Google Scholar 

  16. Braham D, Trinder P. Estimation of glucose by glucose oxidase method. Analyst 1972; 97:142–145.

    Article  Google Scholar 

  17. Leloir LF, Goldenberg SH. Glycogen synthase from rat liver. In: Methods in Enzymology, Colowik SP, Kalpan NO (Eds.). Academic Press 1979; 145–148.

  18. Katz NR, Nauck MA, Wilson PT. Induction of glucokinase by insulin under the permissive action of dexamethasone in primary rat hepatocyte cultures. Biochem Biophys Res Communs 1979;88: 23–29.

    Article  CAS  Google Scholar 

  19. King J. Colorimetric determination of serum lactate dehydrogenase. J Med Lab Tech 1959; 16; 265–269.

    CAS  Google Scholar 

  20. Slater EC, Bonner WD. Effect of fluride on succinate oxidase system. Biochem J 1952; 52:185–196.

    PubMed  CAS  Google Scholar 

  21. Mehler AH, Kornberg A, Grisolia S, Ochoa S. The enzymatic mechanism of oxidation- reduction between malate or isocitrate and pyruvate J Biol Chem 1948; 714: 961–977.

    Google Scholar 

  22. Nyarko AK, Ankah NA, Ofosuchene M, Sittie AA. Acute and sub-chronic evaluation of Indigofera arreeta; Absence of both toxicity and modulation of selected cytochrome P 450 isoenzymes in ddY mice. Phytotherapy Res 1999; 13: 686–688.

    Article  CAS  Google Scholar 

  23. Nichans WG, Samuelsson D. Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 1968; 6: 126–130.

    Article  Google Scholar 

  24. Jiang ZY, Hunt JV, Wolft SD. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 1992; 202: 384–389.

    Article  PubMed  CAS  Google Scholar 

  25. Chaude MA, Orisakwe OE, Afonne OJ, Gamenial KS,. Vongtau OH, Ob E. Hypoglycemic effect of the aqueous extract of Boerrhavia diffusa leaves. Ind J Pharmacol 2001; 33: 215–216.

    Google Scholar 

  26. Aybar M, Sanchez Riera AN, Grau A, Sanchez SS. Hypoglycemic effect of the water extract of Smallanthus soncifolius (yacon) leaves in normal and in diabetic rats. J Ethnopharmacol 2002; 74: 125–132.

    Article  Google Scholar 

  27. Cherian S, Vinod Kumar R, Augusti KT, Kidwai KR. Antidiabetic effect of a glycoside of pelargonidin isolated from the bark of Ficus bengalensis Linn. Ind J Biochem BioPhys 1992; 29: 380–382.

    CAS  Google Scholar 

  28. Pari L, Maheswari JU. Antihyperglycemic activity of Amausa sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytotherapy Res 2000; 14: 136–138.

    Article  CAS  Google Scholar 

  29. Prince SM, Menon VP. Hypoglycemic and other related actions of Tinospora cordiifilo in alloxan-induced diabetic rats. J Ethnopharmacol 2000; 70: 9–15.

    Article  PubMed  Google Scholar 

  30. Hikino H, Kobayashi M, Suzuki M, Konno Y. Mechanism of hypoglycemic activity of aconitan S.A glycan from Aconitum carmichaeli roots. J Ethnopharmacol 1989; 19: 916–923.

    Google Scholar 

  31. Weber G, Lea MA, Fisher EA, Stamm NB. Regulatory pattern of liver carbohydrate metabolizing enzymes; insulin as an inducer of key glycolytic nzymes. Enzymol Clin 1966; 7: 11–24.

    CAS  Google Scholar 

  32. Narendhirakannan RT, Subramanian S, Kandasamy M. Biochemical evaluation of antidiabetogenic properties of some commonly used Indian plants on streptozotocin — induced diabetes in experimental rats. Clin Exp Pharmacol Physiol 2006; 33: 1150–1157.

    Article  PubMed  CAS  Google Scholar 

  33. Chen TL, Chang HC, Chen TG, Tai YT, Chen RM. Modulation of cytochrome P-450 dependent monooxygenases in streptozotocin-induced diabetic hamster: I. Effects of propofol on defluorination and cytochrome P-450 activities. Acta Anaesthesiol Science 2000; 38:15–21.

    CAS  Google Scholar 

  34. Barnett CR, Flatt PR, Toannides C. Modulation of rat hepatic cytochrome P 450 composition by long term streptozotocin-induced insulin dependent diabetes. Biochemical Toxicol 1994; 9:63–69.

    Article  CAS  Google Scholar 

  35. Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin — induced diabetic rats. Singapore Med J 2006; 47: 670–675.

    PubMed  CAS  Google Scholar 

  36. Mano T, Shinohara R, Nagasaka A, Nakagawa H, Uchimura K, Hayashi R, et al. Scavenging effect of nicorandil on free radicals and lipid peroxide in streptozotocin-induced diabetic rats. Metabol 2000; 49: 427–431.

    Article  CAS  Google Scholar 

  37. Halliwall B, Gutteridge JMC. Free radicals in biology and medicine 2nd ed. Clarendern Press, Oxford. 1989.

    Google Scholar 

  38. Sato Y, Hotto N, Sakamoto N, Matsuoka S, Ohishi N, Yagi K. Lipid peroxide level in plasma of diabetic patients. Biochem Med 1979; 21: 104–110.

    Article  PubMed  CAS  Google Scholar 

  39. Hunt JV, Smith CCT, Wolff SF. Autooxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 1990; 9: 1420–1424.

    Article  Google Scholar 

  40. Vinod Kumar R, Augusti KT. Antidiabetic effect of a leucocyanidin derivative isolated from the bark of Ficus bengalensis Linn. Ind J Biochem Biophys 1989; 26: 400–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Kannabiran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gayathri, M., Kannabiran, K. Antidiabetic and ameliorative potential of Ficus bengalensis bark extract in streptozotocin induced diabetic rats. Indian J Clin Biochem 23, 394–400 (2008). https://doi.org/10.1007/s12291-008-0087-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-008-0087-2

Key Words

Navigation