Skip to main content
Log in

Investigation of tube fracture in the rotary draw bending process using experimental and numerical methods

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The quality of tubes obtained by rotary draw bending (RDB) depends on many process parameters whose selection is essential to prevent defects such as fracture, wrinkling, springback and lack of tube’s ovality. Whereas the finite element method (FEM) is a useful method for defects detection in the metal forming processes, the Gurson-Tvergaard Needleman (GTN) damage model is used in the numerical simulation of RDB for fracture prediction of BS 3059 steel tube. The numerical results were verified with the experimental ones for thickness distribution in the tube outer wall and also fracture prediction. The effect of some RDB parameters such as pressure of pressure die, boosting velocity of pressure die, friction between the tube and pressure die, mandrel position and number of mandrel balls were studied on the fracture, wrinkling and tube’s ovality. The results showed that using a low value for the boosting velocity of pressure die caused the tube fracture and using the high value for that increased the wrinkling possibility of the tube inner wall. The results indicated that the fracture possibility increased by increasing the number of mandrel balls and decreaseing the distance between the mandrel position and the bending center. The tube’s ovality will be increased by decreasing the number of mandrel balls and increasing distance between the mandrel position and the bending center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Li H, Yang H, Zhang ZY, Li GJ, Liu N, Welo T (2014) Multiple instability-constrained tube bending limits. J Mater Process Technol 214(2):445–455. https://doi.org/10.1016/j.jmatprotec.2013.09.027

    Article  Google Scholar 

  2. Heng L, He Y, Mei Z, Zhichao S, Ruijie G (2007) Role of mandrel in NC precision bending process of thin-walled tube. Int J Mach Tools Manuf 47(7–8):1164–1175. https://doi.org/10.1016/j.ijmachtools.2006.09.001

    Article  Google Scholar 

  3. Zhan M, Wang Y, Yang H, Long H (2016) An analytic model for tube bending springback considering different parameter variations of Ti-alloy tubes. J Mater Process Technol 236:123–137. https://doi.org/10.1016/j.jmatprotec.2016.05.008

    Article  Google Scholar 

  4. Zhao GY, Liu YL, Dong CS, Yang H, Fan XG (2010) Analysis of wrinkling limit of rotary-draw bending process for thin-walled rectangular tube. J Mater Process Technol 210(9):1224–1231. https://doi.org/10.1016/j.jmatprotec.2010.03.009

    Article  Google Scholar 

  5. Zhu YX, Liu YL, Li HP, Yang H (2013) Springback prediction for rotary-draw bending of rectangular H96 tube based on isotropic, mixed and Yoshida–Uemori two-surface hardening models. Mater Des 47:200–209. https://doi.org/10.1016/j.matdes.2012.12.018

    Article  Google Scholar 

  6. Yang H, Li H, Zhan M (2010) Friction role in bending behaviors of thin-walled tube in rotary-draw-bending under small bending radii. J Mater Process Technol 210(15):2273–2284. https://doi.org/10.1016/j.jmatprotec.2010.08.021

    Article  Google Scholar 

  7. Zhang Z-y, Yang H, Li H, Ren N, Tian Y-1 (2011) Bending behaviors of large diameter thin-walled CP-Ti tube in rotary draw bending. Pro Nat Sci-Mater 21(5):401–412. https://doi.org/10.1016/S1002-0071(12)60076-8

    Article  Google Scholar 

  8. Tian S, Liu Y, Yang H (2013) Effects of geometrical parameters on wrinkling of thin-walled rectangular aluminum alloy wave-guide tubes in rotary-draw bending. Chin J Aeronaut 26(1):242–248. https://doi.org/10.1016/j.cja.2012.12.003

    Article  Google Scholar 

  9. Li C, Yang H, Zhan M, Xu X-d, Li G-j (2009) Effects of process parameters on numerical control bending process for large diameter thin-walled aluminum alloy tubes. Trans Nonferrous Metals Soc China 19(3):668–673. https://doi.org/10.1016/S1003-6326(08)60331-3

    Article  Google Scholar 

  10. Zhao GY, Liu YL, Yang H, Lu CH, Gu RJ (2009) Three-dimensional finite-elements modeling and simulation of rotary-draw bending process for thin-walled rectangular tube. Mater Sci Eng A 499(1–2):257–261. https://doi.org/10.1016/j.msea.2007.11.127

    Article  Google Scholar 

  11. Li H, Yang H, Zhan M, Gu RJ (2007) The interactive effects of wrinkling and other defects in thin-walled tube NC bending process. J Mater Process Technol 187–188:502–507. https://doi.org/10.1016/j.jmatprotec.2006.11.100

    Article  Google Scholar 

  12. Zhu YX, Liu YL, Yang H, Li HP (2013) Improvement of the accuracy and the computational efficiency of the springback prediction model for the rotary-draw bending of rectangular H96 tube. Int J Mech Sci 66:224–232. https://doi.org/10.1016/j.ijmecsci.2012.11.012

    Article  Google Scholar 

  13. Song F, Yang H, Li H, Zhan M, Li G (2013) Springback prediction of thick-walled high-strength titanium tube bending. Chin J Aeronaut 26(5):1336–1345. https://doi.org/10.1016/j.cja.2013.07.039

    Article  Google Scholar 

  14. Hasanpour K, Barati M, Amini B, Poursina M (2013) The effect of anisotropy on wrinkling of tube under rotary draw bending. J Mech Sci Technol 27(3):783–792. https://doi.org/10.1007/s12206-013-0124-9

    Article  Google Scholar 

  15. Xue X, Liao J, Vincze G, Gracio J (2014) Twist Springback of asymmetric thin-walled tube in mandrel rotary draw bending process. Procedia Eng 81:2177–2183. https://doi.org/10.1016/j.proeng.2014.10.305

    Article  Google Scholar 

  16. Wen T (2014) On a new concept of rotary draw bend-die adaptable for bending tubes with multiple outer diameters under non-mandrel condition. J Mater Process Technol 214(2):311–317. https://doi.org/10.1016/j.jmatprotec.2013.09.019

    Article  Google Scholar 

  17. Zhao G-y, Liu Y-1, Yang H, Lu C-h (2010) Cross-sectional distortion behaviors of thin-walled rectangular tube in rotary-draw bending process. Trans Nonferrous Metals Soc China 20(3):484–489. https://doi.org/10.1016/S1003-6326(09)60166-7

    Article  Google Scholar 

  18. Guangjun L, Heng Y, Xudong X, Heng L, He Y (2018) Formability of thin-walled commercial pure titanium tube upon rotary draw bending. Rare Metal Mater Eng 47(1):26–32. https://doi.org/10.1016/S1875-5372(18)30066-3

    Article  Google Scholar 

  19. Oh C-K, Kim Y-J, Baek J-H, Kim Y-P, Kim W (2007) A phenomenological model of ductile fracture for API X65 steel. Int J Mech Sci 49(12):1399–1412. https://doi.org/10.1016/j.ijmecsci.2007.03.008

    Article  Google Scholar 

  20. Alegre JM, Cuesta II, Bravo PM (2011) Implementation of the GTN damage model to simulate the small punch test on pre-cracked specimens. Procedia Eng 10:1007–1016. https://doi.org/10.1016/j.proeng.2011.04.166

    Article  Google Scholar 

  21. Safdarian R (2018) Forming limit diagram prediction of 6061 aluminum by GTN damage model. Mech Ind 19(2):202

    Article  Google Scholar 

  22. Safdarian R (2020) Forming Limit Diagram Prediction of AISI 304–St 12 Tailor Welded Blanks Using GTN Damage Model. J Test Eval

  23. (ASTM) ASfTaM (1999) Metals test methods and analytical procedures

  24. Björklund O (2014) Ductile Failure in High Strength Steel Sheets. Doctoral thesis, comprehensive summary, Linköping University Electronic Press, Linköping

  25. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15

    Article  Google Scholar 

  26. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389–407. https://doi.org/10.1007/bf00036191

    Article  Google Scholar 

  27. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169. https://doi.org/10.1016/0001-6160(84)90213-X

    Article  Google Scholar 

  28. Abbassi F, Belhadj T, Mistou S, Zghal A (2013) Parameter identification of a mechanical ductile damage using artificial neural networks in sheet metal forming. Mater Des 45:605–615. https://doi.org/10.1016/j.matdes.2012.09.032

    Article  Google Scholar 

  29. Chu CC, Needleman A (1980) Void nucleation effects in Biaxially stretched sheets. J Eng Mater Technol 102(3):249–256. https://doi.org/10.1115/1.3224807

    Article  Google Scholar 

  30. He M, Li F, Wang Z (2011) Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test. Chin J Aeronaut 24(3):378–386. https://doi.org/10.1016/S1000-9361(11)60045-9

    Article  Google Scholar 

  31. Safdarian R (2018) Failure prediction of Superheater tubes in rotary tube bending process using GTN damage model. Trans Indian Inst Metals 72(2). https://doi.org/10.1007/s12666-018-1499-1

  32. Hibbitt K, Sorensen (2002) ABAQUS/CAE User's Manual. Hibbitt, Karlsson & Sorensen, Incorporated,

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Safdarian.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdarian, R. Investigation of tube fracture in the rotary draw bending process using experimental and numerical methods. Int J Mater Form 13, 493–516 (2020). https://doi.org/10.1007/s12289-019-01484-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-019-01484-5

Keywords

Navigation