Skip to main content
Log in

Local strain measurements of yarns inside of 3D warp interlock fabric during forming process

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns. Additionally, sensor yarns located in the two directions of the 3D warp interlock fabric have revealed a different forming behaviour depending on the architecture and the different slope values of the punch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Miller AH, Dodds N, Hale JM, Gibson AG (1998) High Speed Pultrusion of Thermoplastic Matrix Composites. Compos A: Appl Sci Manuf 29(7):773–778. https://doi.org/10.1016/S1359-835X(98)00006-2

    Article  Google Scholar 

  2. Hou M, Ye L, Mai Y-W (1995) Advances in Processing of Continuous Fibre Reinforced Composites With Thermoplastic Matrix. Plast Rubber Compos Process Appl 23(5):279–293 ISSN: 0959-8111

    Google Scholar 

  3. Lebrun G, Bureau MN, Denault J (2003) Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos Struct 61(4):341–352. https://doi.org/10.1016/S0263-8223(03)00057-6

    Article  Google Scholar 

  4. Zaixia F, Zhangyu, Yanmo C, Hairu L (2016) Investigation on the Tensile Properties of Knitted Fabric Reinforced Composites made from GF-PP Commingled Yarn Preforms with Different Loop Densities. J Thermoplast Compos Mater 19(1):113–126. https://doi.org/10.1177/0892705706055446

    Article  Google Scholar 

  5. Alagirusamy R, Ogale V (2016) Commingled and Air Jet-Textured Hybrid Yarns for Thermoplastic Composites. J Ind Text 33(4):223–243. https://doi.org/10.1177/1528083704044360

    Article  Google Scholar 

  6. Alagirusamy R, Fangueiro R, Ogale V, Padaki N (2010) Hybrid Yarns and Textile Preforming for Thermoplastic Composites. Text Progress J 38(4):1–71. https://doi.org/10.1533/tepr.2006.0004

    Article  Google Scholar 

  7. Svensson N, Shishoo R, Gilchrist M (2016) Manufacturing of Thermoplastic Composites from Commingled Yarns-A Review. J Thermoplast Compos Mater 11(1):22–56. https://doi.org/10.1177/089270579801100102

    Article  Google Scholar 

  8. Mäder E, Rausch J, Schmidt N (2008) Commingled yarns – Processing aspects and tailored surfaces of polypropylene/glass composites. Compos A: Appl Sci Manuf 39(4):612–623. https://doi.org/10.1016/j.compositesa.2007.07.011

    Article  Google Scholar 

  9. Ye L, Friedrich K, Kästel J (1994) Consolidation of GF/PP Commingled Yarn Composites. Appl Compos Mater 1(6):415–429. https://doi.org/10.1007/BF00706502

    Article  Google Scholar 

  10. Bernet N, Michaud V, Bourban P-E, Månson J-A (2001) Commingled Yarn Composites for Rapid Processing of Complex Shapes. Compos A: Appl Sci Manuf 32(11):1613–1626. https://doi.org/10.1016/S1359-835X(00)00180-9

    Article  Google Scholar 

  11. Fitoussi J, Bocquet M, Meraghni F (2013) Effect of the matrix behavior on the damage of ethylene–propylene glass fiber reinforced composite subjected to high strain rate tension. Compos B 45(1):1181–1191. https://doi.org/10.1016/j.compositesb.2012.06.011

    Article  Google Scholar 

  12. Hufenbach W, Böhm R, Thieme M, Winkler A (2011) Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications. Mater Des 32(3):1468–1476. https://doi.org/10.1016/j.matdes.2010.08.049

    Article  Google Scholar 

  13. Faggiani A, Falzon BG (2010) Predicting low-velocity impact damage on a stiffened composite panel. Compos A: Appl Sci Manuf 41(6):737–749. https://doi.org/10.1016/j.compositesa.2010.02.005

    Article  Google Scholar 

  14. Falzon BG, Hawkins SC, Huynh CP, Radjef R, Brown C (2013) An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface. Compos Struct 106:65–73. https://doi.org/10.1016/j.compstruct.2013.05.051

    Article  Google Scholar 

  15. Green SD, Long AC, El Said BSF, Hallett SR (2014) Numerical modelling of 3D woven preform deformations. Compos Struct 108:747–756

    Article  Google Scholar 

  16. Mahadik Y, Robson Brown KA, Hallett SR (2010) Characterization of 3D woven composite internal architecture and effect of compaction. Compos A: Appl Sci Manuf 41(7):872–880. https://doi.org/10.1016/j.compositesa.2010.02.019

    Article  Google Scholar 

  17. Potluri P, Hogg P, Arshad M, Jetavat D, Jamshidi P (2012) Influence of fibre architecture on impact damage tolerance in 3D woven composites. Appl Compos Mater 5(19):799–812. https://doi.org/10.1007/s10443-012-9256-9

    Article  Google Scholar 

  18. Mouritz AP, Cox BN (2010) A mechanistic interpretation of the comparative in-plane mechanical properties of 3D woven, stitched and pinned composites. Compos A: Appl Sci Manuf 41(6):709–728. https://doi.org/10.1016/j.compositesa.2010.02.001

    Article  Google Scholar 

  19. Kamiya R, Cheeseman BA, Popper P, Chou TW (2000) Some recent advances in the fabrication and design of three-dimensional textile preforms: a review. Compos Sci Technol 60(1):33–47. https://doi.org/10.1016/S0266-3538(99)00093-7

    Article  Google Scholar 

  20. Lomov S, Bogdanovich AE, Ivanov DS, Mungalov D, Karathan M, Verpoest I (2009) A comparative study of tensile properties of non crimp 3D orthogonal weave and multi layer plain weave e-glass composites. Part1: Materials, Methods and Principal Results. Compos A: Appl Sci Manuf 40(8):1134–1143. https://doi.org/10.1016/j.compositesa.2009.03.012

    Article  Google Scholar 

  21. Chen X, Taylor LW, Tsai LJ (2011) An overview on fabrication of three-dimensional woven textile preforms for composites. Text Res J 81(9):932–944. https://doi.org/10.1177/0040517510392471

    Article  Google Scholar 

  22. Mouritz AP, Leong KH, Herszberg I (1997) A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Compos A: Appl Sci Manuf 28(12):979–991. https://doi.org/10.1016/S1359-835X(97)00057-2

    Article  Google Scholar 

  23. Mouritz AP, Cox BN (2000) A mechanistic approach to the properties of stitched laminates. Compos A: Appl Sci Manuf 31(1):1–27. https://doi.org/10.1016/S1359-835X(99)00056-1

    Article  Google Scholar 

  24. Pegorin F, Pingkarawat K, Daynes S, Mouritz AP (2015) Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites. Compos Part B 78:298–307. https://doi.org/10.1016/j.compositesb.2015.03.093

    Article  Google Scholar 

  25. Mouritz AP (2007) Review of z-pinned composite laminates. Compos A: Appl Sci Manuf 38(12):2383–2397. https://doi.org/10.1016/j.compositesa.2007.08.016

    Article  Google Scholar 

  26. Dell’Anno G, Cartié DD, Partridge IK, Rezai A (2007) Exploring mechanical property balance in tufted carbon fabric/epoxy composites. Compos A: Appl Sci Manuf 38(11):2366–2373

    Article  Google Scholar 

  27. Dell’Anno G, Treiber J, Partridge I (2016) Manufacturing of composite parts reinforced through-thickness by tufting. Robot Comput Integr Manuf 37:262–272. https://doi.org/10.1016/j.rcim.2015.04.004

    Article  Google Scholar 

  28. Dau F, Dano ML, Duplessis-Kergomard Y (2016) Experimental investigations and variability considerations on 3D interlock textile composites used in low velocity soft impact loading. Compos Struct 153:369–379. https://doi.org/10.1016/j.compstruct.2016.06.034

    Article  Google Scholar 

  29. Castaneda N, Wisner B, Cuadra J, Amini S, Kontsos A (2017) Investigation of the Z-binder Role in Progressive Damage of 3D Woven Composites. Compos A: Appl Sci Manuf 98:76–89. https://doi.org/10.1016/j.compositesa.2016.11.022

    Article  Google Scholar 

  30. Warren KC, Lopez-Anido RA, Goering J (2015) Experimental investigation of three dimensional woven composite. Compos A: Appl Sci Manuf 73:242–259. https://doi.org/10.1016/j.compositesa.2015.03.011

    Article  Google Scholar 

  31. Yu B, Blanc R, Soutis C, Withers PJ (2016) Evolution of damage during the fatigue of 3D woven glass-fibre reinforced composites subjected to tension–tension loading observed by time-lapse X-ray tomography. Compos A: Appl Sci Manuf 82:279–290. https://doi.org/10.1016/j.compositesa.2015.09.001

    Article  Google Scholar 

  32. Naouar N, Vidal-Sallé E, Schneider J, Maire E, Boisse P (2015) 3D composite reinforcement meso F.E analyses based on X-ray computed tomography. Compos Struct 132:1094–1104. https://doi.org/10.1016/j.compstruct.2015.07.005

    Article  Google Scholar 

  33. Long AC (2007) Composites Forming Technologies. Woodhead Publishing, Cambridge ISBN: 9781845690335

    Google Scholar 

  34. Wang P, Hamila N, Boisse P (2013) Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix. Compos B 52:127–136. https://doi.org/10.1016/j.compositesb.2013.03.045

    Article  Google Scholar 

  35. Zhu B, Yu TX, Zhang H, Tao XM (2011) Experimental investigation of formability of commingled woven composite preform in stamping operation. Compos Part B 42(2):289–295. https://doi.org/10.1016/j.compositesb.2010.05.006

    Article  Google Scholar 

  36. Omrani F, Wang P, Soulat D, Ferreira M, Ouagne P (2016) Analysis of the deformability of flax-fibre nonwoven fabrics during manufacturing. Compos Part B. https://doi.org/10.1016/j.compositesb.2016.11.003

    Article  Google Scholar 

  37. Bel S, Hamila N, Boisse P, François D (2012) Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding. Compos A: Appl Sci Manuf 43(12):2269–2277. https://doi.org/10.1016/j.compositea.2012.08.005

    Article  Google Scholar 

  38. Li XK, Bai SL (2009) Sheet forming of the multi-layered biaxial weft knitted fabric reinforcement. Part I: on hemispherical surfaces. Compos A: Appl Sci Manuf 40(6–7):766–777. https://doi.org/10.1016/j.compositea.2009.03.007

    Article  Google Scholar 

  39. Jacquot PB, Wang P, Soulat D, Legrand X (2015) Analysis of the preforming behavior of the braided and woven flax/polyamide fabrics. J Ind Text 46(3):698–718. https://doi.org/10.1177/1528083715591592

    Article  Google Scholar 

  40. Khan MA, Mabrouki T, Vidal-Sallé E, Boisse P (2010) Numerical and experimental analyses of woven composite reinforcement forming a hypoelastic behaviour. application to the double dome benchmark. J Mater Process Technol 210(2):378–388. https://doi.org/10.1016/j.jmatprotec.2009.09.027

    Article  Google Scholar 

  41. Ouagne P, Soulat D, Moothoo J, Capelle E, Gueret S (2013) Complex shape forming of a flax woven fabric; analysis of the tow buckling and misalignment defect. Compos A: Appl Sci Manuf 51:1–10. https://doi.org/10.1016/j.compositea.2013.03.017

    Article  Google Scholar 

  42. Allaoui S, Hivet G, Soulat D, Wendling A, Ouagne P, Chatel S (2014) Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement. Int J Mater Form 7(2):155–165. https://doi.org/10.1007/s12289-012-1116-5

    Article  Google Scholar 

  43. Allaoui S, Cellard C, Hivet G (2015) Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms. Compos A: Appl Sci Manuf 68:336–345. https://doi.org/10.1016/j.compositesa.2014.10.017

    Article  Google Scholar 

  44. Dufour C, Wang P, Boussu F, Soulat D (2013) Experimental investigation about stamping behaviour of 3D warp interlock composite performs. Appl Compos Mater 21:725–738. https://doi.org/10.1007/s10443-013-9369-9

    Article  Google Scholar 

  45. Zhang Y, Sun F, Wang Y, Chen L, Pan N (2013) Study on intra/inter-ply shear deformation of three dimensional woven preforms for composite materials. Mater Des 59:151–159. https://doi.org/10.1016/j.matdes.2013.02.025

    Article  Google Scholar 

  46. De Luycker E, Morestin F, Boisse P, Marsal D (2009) Simulation of 3D interlock composite preforming. Compos Struct 88(4):615–623. https://doi.org/10.1016/j.compstruct.2008.06.005

    Article  Google Scholar 

  47. Charmetant A, Orliac JG, Vidal-Sallé E, Boisse P (2012) Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Compos Sci Technol 72(12):1352–1360. https://doi.org/10.1016/j.compscitech.2012.05.006

    Article  Google Scholar 

  48. Capelle E, Ouagne P, Soulat D, Duriatti D (2014) Complex shape forming of flax woven fabrics: Design of specific blank-holder shapes to prevent defects. Compos Part B 62:29–36. https://doi.org/10.1016/j.compositesb.2014.02.007

    Article  Google Scholar 

  49. Trifigny N, Kelly FM, Cochrane C, Boussu F, Koncar V, Soulat D (2013) PEDOT:PSS-Based Piezo-Resistive Sensors Applied to Reinforcement Glass Fibres for in Situ Measurement during the Composite Material Weaving Process. Sensors 13(8):10749–10764. https://doi.org/10.3390/s130810749

    Article  Google Scholar 

  50. Maity S, Chetterjee A (2016) Conductive polymer based electro-conductive textile composites for electromagnetic interference shielding: A review. J Ind Text. https://doi.org/10.1177/1528083716670310

    Article  Google Scholar 

  51. European Commission (2009) One-shot manufacturing on large scale of 3D up graded panels and stiffeners for lightweight thermoplastic textile composite structure. MAPICC 3D number 263159-1, Brussels

    Google Scholar 

  52. Risicato JV, Kelly F, Soulat D, Legrand X, Trümper W, Cochrane C, Koncar V (2015) A Complex Shaped Reinforced Thermoplastic Composite Part Made of Commingled Yarns With Integrated Sensor. Appl Compos Mater 22(1):81–98. https://doi.org/10.1007/s10443-014-9400-9

    Article  Google Scholar 

  53. Cochrane C, Konvar V, Lewandowski M, Dufour C (2007) Design and Development of a flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite. Sensors Actuators A 7:473–492. https://doi.org/10.3390/s7040473

    Article  Google Scholar 

  54. Koncar V, Cochrane C, Lewandowski M, Boussu F, Dufour C (2009) Electro-conductive sensors and heating elements based on conductive polymer composites. Int J Cloth Sci Technol 21(2/3):82–92. https://doi.org/10.1108/09556220910933808

    Article  Google Scholar 

  55. Trifigny N, Kelly FM, Cochrane C, Boussu F, Soulat D, Koncar V (2013) In-Situ measurements of strain and stress on glass warp yarn during the weaving of 3d interlock structure with innovative sensors. In: TEXCOMP 11 Conference. Leuven, Belgium

  56. Nauman S, Cristian I, Boussu F, Koncar V (2013) Piezoresistive fibrous sensor for on line structural health monitoring of composites. In CRC Press (ed) Smart sensors for Industrial applications. ISBN-13: 978-1-4665-6810-5

  57. Nauman S, Cristian I, Boussu F, Koncar V (2010) In situ strain sensing in Three dimensional woven preform based composites using flexible tensile sensor. In: 10th TEXCOMP International Conference on Textile Composites. Lille, France, pp 363–370. ISBN: 978-1-60595-026-6

  58. Boussu F, Trifigny N, Cochrane C, Koncar V (2016) Fibrous sensors to help the monitoring of weaving process. In: Koncar V (ed) Smart Textiles and their applications. Woodhead Publishing, Cambridge ISBN: 978-0-08-100574-3

    Google Scholar 

  59. Boussu F, Cristian I, Nauman S (2015) General definition of 3D warp interlock fabric architecture. Compos B 81:171–188. https://doi.org/10.1016/j.compositesb.2015.07.013

    Article  Google Scholar 

Download references

Acknowledgments

This study has been funded by the European Commission through the large-scale integrating collaborative project FP7 - MAPPIC 3D - number 263159-1 - and entitled: One-shot Manufacturing on large scale of 3D up graded panels and stiffeners for lightweight thermoplastic textile composite structures [51].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Boussu.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dufour, C., Boussu, F., Wang, P. et al. Local strain measurements of yarns inside of 3D warp interlock fabric during forming process. Int J Mater Form 11, 775–788 (2018). https://doi.org/10.1007/s12289-017-1385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-017-1385-0

Keywords

Navigation