Skip to main content
Log in

Buckling of rolled thin sheets under residual stresses by ANM and Arlequin method

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

We present a numerical technique to model the buckling of a rolled thin sheet. It consists in coupling, within the Arlequin framework, a three dimensional model based on 8-nodes tri-linear hexahedron, used in the sheet part located upstream the roll bite, and a well-suited finite element shell model, in the roll bite downstream sheet part, in order to cope with buckling phenomena. The resulting nonlinear problem is solved by the Asymptotic Numerical Method (ANM) that is efficient to capture buckling instabilities. The originalities of the paper ly, first in an Arlequin procedure with moving meshes, second in an efficient application to a thin sheet rolling process. The suggested algorithm is applied to very thin sheet rolling scenarios involving “edges-waves” and “center-waves” defects. The obtained results show the effectiveness of our global approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abdelkhalek S, Zahrouni H, Potier-Ferry M, Legrand N, Montmitonnet P, Buessler P (2009) Coupled and uncoupled approaches for thin cold rolled strip buckling prediction. Int J Mater Form 2(1):833–836

    Article  Google Scholar 

  2. Marchand H (2000) Modélisation de la planéité en sortie de laminage des produits plats (Modelling flatness in flat rolling), Ph.D. thesis École nationale supérieure des mines de Paris

  3. Hacquin A, Montmitonnet P, Guillerault J.-P. (1996) A steady state thermo-elastoviscoplastic finite element model of rolling with coupled thermo-elastic roll deformation. J Mater Process Technol 60(1):109–116

    Article  MATH  Google Scholar 

  4. Abdelkhalek S (2010) Un exemple de flambage sous contraintes internes: Étude des défauts de planéité en laminage á froid des tôles minces, Ph.D. thesis École nationale supérieure des mines de Paris

  5. Fischer FD, Rammerstorfer FG, Friedl N, Wieser W (2000) Buckling phenomena related to rolling and levelling of sheet metal. Int J Mech Sci 42(10):1887–1910

    Article  MATH  Google Scholar 

  6. Fischer FD, Friedl N, Noe A, Rammerstorfer FG (2005) A study on the buckling behaviour of strips and plates with residual stresses. Steel Res Int 76(4):327–335

    Article  Google Scholar 

  7. Rammerstorfer FG, Fischer FD, Friedl N (2001) Buckling of free infinite strips under residual stresses and global tension. J Appl Mech 68(3):399–404

    Article  MATH  Google Scholar 

  8. Nakhoul R, Montmitonnet P, Potier-Ferry M (2015) Multi-scale method for modeling thin sheet buckling under residual stresses in the context of strip rolling. Int J Solids Struct 66:62– 76

    Article  Google Scholar 

  9. Kpogan K (2014) Simulation numérique de la planéité des tôles métalliques formées par laminage, Ph.D. thesis, Université de Lorraine

  10. Counhaye C (2000) Modélisation et contrôle industriel de la géométrie des aciers laminés à froid (modelling and industrial control of the geometry of cold rolled steels), Ph.D. thesis, Université de Liège

  11. Roddeman D, Drukker J, Oomens C, Janssen J (1987) The wrinkling of thin membranes: Part i—theory. J Appl Mech 54(4):884–887

    Article  MATH  Google Scholar 

  12. Abdelkhalek S, Montmitonnet P, Potier-Ferry M, Zahrouni H, Legrand N, Buessler P (2010) Strip flatness modelling including buckling phenomena during thin strip cold rolling. Ironmak Steelmak 37(4):290–297

    Article  Google Scholar 

  13. Ben Dhia H (1998) Multiscale mechanical problems: the Arlequin method. C R Acad Sci IIB 326(12):899–904

    MATH  Google Scholar 

  14. Ben Dhia H, Rateau G (2005) The arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62(11):1442–1462

    Article  MATH  Google Scholar 

  15. Ben Dhia H, Rateau G (2001) Mathematical analysis of the mixed Arlequin method. C R Acad Bulg Sci I 332(7):649–654

    Article  MATH  Google Scholar 

  16. Philippe S (2009) Développement d’une formulation arbitrairement lagrangienne eulérienne pour la simulation tridimensionnelle du laminage de produits plats, Ph.d. thesis École nationale supérieure des mines de Paris

  17. Büchter N, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Methods Eng 37(15):2551–2568

    Article  MATH  Google Scholar 

  18. Simo J, Rifai M (1990) A class of mixed assumed strain methods and method of incompatible modes. Int J Numer Methods Eng 37:1595–1636

    Article  MathSciNet  MATH  Google Scholar 

  19. Zahrouni H, Cochelin B, Potier-Ferry M (1999) Computing finite rotations of shells by an asymptotic-numerical method. Comput Methods Appl Mech Eng 175(1):71–85

    Article  MATH  Google Scholar 

  20. Bischoff M, Ramm E (2000) On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation. International journal of solids ans structures 37:6933–6960

    Article  MATH  Google Scholar 

  21. Azrar L, Cochelin B, Damil N, Potier-Ferry M (1993) An asymptotic numerical method to compute postbuckling behavior of elastic plates and shells. Int J Numer Methods Eng 36(8):1251–1277

    Article  MATH  Google Scholar 

  22. Tri A, Cochelin B, Potier-Ferry M (1996) Résolution des équations de navier stokes et détection des bifurcations stationnaires par une méthode asymptotique numérique. Revue européenne des éléments finis 5:415–442

    Article  MathSciNet  MATH  Google Scholar 

  23. Boutyour E, Zahrouni H, Potier-Ferry M, Boudi M (2004) Bifurcation points and bifurcated branches by an asymptotic numerical method and padé approximants. Int J Numer Methods Eng 60(12):1987–2012

    Article  MATH  Google Scholar 

  24. Cadou JM, Potier-Ferry M, Cochelin B (2006) A numerical method for the computation of bifurcation points in fluid mechanics. Europeen journal of mechanics B: fluids 25:234–254

    Article  MathSciNet  MATH  Google Scholar 

  25. Cochelin B (1994) A path-following technique via an asymptotic-numerical method. Comput Struct 53(5):1181–1192

    Article  MATH  Google Scholar 

  26. Cochelin B, Damil N, Potier-Ferry M Méthode asymptotique numérique. Hermes-Sciences, Paris

  27. Tri A, Zahrouni H, Potier-Ferry M (2014) Bifurcation indicator based on meshless and asymptotic numerical methods for nonlinear poisson problems. Numerical methods for partial differential equations 30(3):978–993

    Article  MathSciNet  MATH  Google Scholar 

  28. Rateau G (2003) Méthode Arlequin pour les problémes mécaniques multi-échelles: Applications á des problémes de jonction et de fissuration de structures élancées, Ph.D. thesis, École Centrale de Paris

  29. Guidault P.-A., Belytschko T. (2007) On the L2 and the H1 couplings for an overlapping domain decomposition method using lagrange multipliers. Int J Numer Methods Eng 70(3):322–350

    Article  MATH  Google Scholar 

  30. Roddeman D, Drukker J, Oomens C, Janssen J (1987) The wrinkling of thin membranes: Part I—theory. J Appl Mech 54(4):884–887

    Article  MATH  Google Scholar 

  31. Abdelkhalek S, Montmitonnet P, Legrand N, Buessler P (2011) Coupled approach for flatness prediction in cold rolling of thin strip. Int J Mech Sci 53(9):661–675

    Article  Google Scholar 

  32. Bush A, Nicholls R, Tunstall J (2001) Stress levels for elastic buckling of rolled strip and plate. Ironmak Steelmak 28(6):481–484

    Article  Google Scholar 

  33. Hibbitt K (2001) Sorensen, ABAQUS/standard user’s Manual, Vol. 1, Hibbitt, Karlsson & Sorensen

  34. Abdelkhalek S, Zahrouni H, Legrand N, Potier-Ferry M (2015) Post-buckling modeling for strips under tension and residual stresses using asymptotic numerical method. Int J Mech Sci 104:126–137

    Article  Google Scholar 

  35. Friedl N, Rammerstorfer FG, Fischer FD (2000) Buckling of stretched strips. Comput Struct 78(1):185–190

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the French National Research Agency (ANR) ANR-11-LABX-0008-01, LabEx DAMAS, for its financial support and the partners of the ANR PLATFORM, under contract no. 2012-RNMP-019-07, (ArcelorMittal, CEA, CEMEFMINES-PARISTECH, Constellium, Ecole Centrale of Paris, INSA Lyon and Paul Verlaine university of Metz) for the authorization to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kpogan.

Appendix A: Details of asymptotic numerical algorithm

Appendix A: Details of asymptotic numerical algorithm

Asymptotic Numerical Method (ANM) is a technique for solving nonlinear partial differential equations based on Taylor series with high truncation order. It has been proved to be an efficient method to deal with nonlinear problems in fluid and solid mechanics [19, 2124, 26]. This technique consists in transforming a given nonlinear problem into a sequence of linear ones to be solved successively, leading to a numerical representation of the solution in the form of power series truncated at relatively high orders. Once the series are fully determined, an accurate approximation of the solution path is provided inside a determined validity range. Compared to iterative methods, ANM allows significant reduction of computation time since only one decomposition of the stiffness matrix is used to describe a large part of the solution branch without need of any iteration procedure. First, the procedure allows expanding the unknown variables of the problem in the form of power series with respect to a path parameter a and truncated at order N . For the considered problem 6, we set:

$$\begin{array}{@{}rcl@{}} \left( \begin{array}{c} u_{i}\\ \mu\\ \widetilde{\gamma}\\ \sigma\\ S\\ \lambda \\ \lambda_{res} \end{array}\right)&=& \left( \begin{array}{c} {u^{0}_{i}}\\ \mu^{0}\\\widetilde{\gamma}^{0}\\ \sigma^{0}\\ S^{0}\\ \lambda^{0} \\ \lambda^{0}_{res}\end{array}\right) + a\left( \begin{array}{c} {u_{i}^{1}}\\ \mu^{1}\\ \widetilde{\gamma}^{1}\\ \sigma^{1} \\ S^{1}\\ \lambda^{1} \\ \lambda^{1}_{res} \end{array}\right)+ a^{2}\left( \begin{array}{c} {u_{i}^{2}}\\ \mu^{2}\\ \widetilde{\gamma}^{2} \\ \sigma^{2} \\ S^{2}\\ \lambda^{2} \\ \lambda^{2}_{res} \end{array}\right)\\&&+ \cdot \ \cdot \ \cdot + a^{N}\left( \begin{array}{c} {u_{i}^{N}}\\ \mu^{N} \\ \widetilde{\gamma}^{N} \\ \sigma^{N} \\ S^{N} \\ \lambda^{N} \\ \lambda_{res}^{N} \end{array}\right) \end{array} $$
(12)

The series thus formed is composed of N sequences of the unknown variables and with the initial state of the problem given for order 0. For simplicity, we assume that there are no forces applied on the boundary of the coupling domain. In addition, by considering any vector \((\cdot )^{j}_{i}\), j denotes an asymptotic order and i represents the 3D domain (i = 1) or the shell domain (i = 2). Substituting (12) into (6), we obtain the following linear problem for order 1:

$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{l} {\int}_{{\Omega}_{1}} \alpha_{1}{~}^{t} \sigma^{1} : \varepsilon(\delta u_{1}) \, \mathrm{d}{\Omega}+{\int}_{{\Omega}_{c}} \left\{\kappa \mu^{1} \delta u_{1} +\varepsilon(\mu^{1}):\mathbb{C}:\varepsilon(\delta u_{1}) \right\} \, \mathrm{d}{\Omega} =0 \\ \\ {\int}_{{\Omega}_{2}} \alpha_{2} \left\{ {~}^{t} S^{1} : \left[ \gamma^{l}(\delta u_{2})+2\gamma^{nl}\left( {u^{0}_{2}},\delta u_{2}\right) \right] + {~}^{t}S^{0}:2\gamma^{nl}\left( {u^{1}_{2}},\delta u_{2}\right) \right\} \, \mathrm{d}{\Omega} \\ \hspace{1cm}- {\int}_{{\Omega}_{c}} \left\{\kappa \mu^{1} \delta u_{2} +\varepsilon(\mu^{1}):\mathbb{C}:\varepsilon(\delta u_{2}) \right\} \, \mathrm{d}{\Omega}=\lambda^{1} {\int}_{{\Omega}_{2}} f \delta u_{2} \, \mathrm{d}{\Gamma} \\ \\ {\int}_{{\Omega}_{c}(x_{0})} \left\{\kappa \delta \mu {u^{1}_{1}} +\varepsilon(\delta \mu):\mathbb{C}:\varepsilon\left( {u^{1}_{1}}\right) \right\} \, \mathrm{d}{\Omega} - {\int}_{{\Omega}_{c}(x_{0})} \left\{\kappa \delta \mu {u^{1}_{2}} +\varepsilon(\delta \mu):\mathbb{C}:\varepsilon\left( {u^{1}_{2}}\right) \right\} \, \mathrm{d}{\Omega}=0\\ \\ {\int}_{{\Omega}_{2}} {~}^{t}S^{1}:\delta \widetilde{\gamma} \, \mathrm{d}{\Omega}=0\\ \\ \sigma^{1}= \mathbb{C}:\varepsilon^{1} + \lambda^{1}_{res} \sigma^{res} \\ S^{1}= \mathbb{C}: \left[ \gamma^{l}\left( {u_{2}^{1}}\right)+2\gamma^{nl}\left( {u^{1}_{2}},{u_{2}^{0}}\right) + \widetilde{\gamma}^{1} \right]+ \lambda^{1}_{res} S^{res} \end{array}\right. \end{array} $$
(13)

Similarly, we can derive the following linear problem for order k (1 < kN)

$$\begin{array}{@{}rcl@{}}</p><p class="noindent">\left\{\begin{array}{l} {\int}_{{\Omega}_{1}} \alpha_{1}{~}^{t} \sigma^{k} : \varepsilon(\delta u_{1}) \, \mathrm{d}{\Omega}+{\int}_{{\Omega}_{c}} \left\{\kappa \mu^{k} \delta u_{1} +\varepsilon(\mu^{k}):\mathbb{C}:\varepsilon(\delta u_{1}) \right\} \, \mathrm{d}{\Omega} =0 \\ \\ {\int}_{{\Omega}_{2}} \alpha_{2} \left\{ {~}^{t} S^{k} : \left[ \gamma^{l}(\delta u_{2})+2\gamma^{nl}({u^{0}_{2}},\delta u_{2}) \right] + {~}^{t}S^{0}:2\gamma^{nl}\left( {u^{k}_{2}},\delta u_{2}\right) \right\} \, \mathrm{d}{\Omega} \\ \hspace{1cm}- {\int}_{{\Omega}_{c}} \left\{\kappa \mu^{k} \delta u_{2} +\varepsilon(\mu^{k}):\mathbb{C}:\varepsilon(\delta u_{2}) \right\} \, \mathrm{d}{\Omega}=\lambda^{k} {\int}_{{\Omega}_{2}} f \delta u_{2} \, \mathrm{d}{\Gamma} \\ \hspace{1cm} - {\int}_{{\Omega}_{2}}{\sum}_{j=1}^{k-1} \left ({~}^{t}S^{j}:2\gamma^{nl}\left( u^{k-j}_{2},\delta u_{2}\right) \right ) \\ \\ {\int}_{{\Omega}_{c}(x_{0})} \left\{\kappa \delta \mu {u^{k}_{1}} +\varepsilon(\delta \mu):\mathbb{C}:\varepsilon\left( {u^{k}_{1}}\right) \right\} \, \mathrm{d}{\Omega} - {\int}_{{\Omega}_{c}(x_{0})} \left\{\kappa \delta \mu {u^{k}_{2}} +\varepsilon(\delta \mu):\mathbb{C}:\varepsilon\left( {u^{k}_{2}}\right) \right\} \, \mathrm{d}{\Omega}=0\\ \\ {\int}_{{\Omega}_{2}} {~}^{t}S^{k}:\delta \widetilde{\gamma} \, \mathrm{d}{\Omega}=0\\ \\ \sigma^{k} = \mathbb{C}:\varepsilon^{k} + \lambda^{k}_{res} \sigma^{res}\\ S^{k} = \mathbb{C}: \left[ \gamma^{l}\left( {u_{2}^{k}}\right)+2\gamma^{nl}\left( {u^{k}_{2}},{u_{2}^{0}}\right) + {\sum}_{j=1}^{k-1} \gamma^{nl}\left( u^{k-j}_{2},{u_{2}^{j}}\right) + \widetilde{\gamma}^{k} \right]+ \lambda^{k}_{res} S^{res} \end{array}\right. \end{array} $$
(14)

To solve the system of Eqs. 13 and 14, an additional equation is needed. In this work, we introduce a condition similar to the arc-length type continuation condition:

$$ a=<\left\{ u_{1}\\ u_{2}\right\}-\left\{ {u^{0}_{1}}\\ {u^{0}_{2}}\right\},\left\{ {u^{1}_{1}}\\ {u^{1}_{2}}\right\}> $$
(15)

where < ., > denotes the scalar product for two vectors.

For the continuation procedure, reader can refer to references [21, 25, 26].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kpogan, K., Zahrouni, H., Potier-Ferry, M. et al. Buckling of rolled thin sheets under residual stresses by ANM and Arlequin method. Int J Mater Form 10, 389–404 (2017). https://doi.org/10.1007/s12289-016-1288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-016-1288-5

Keywords

Navigation