Skip to main content
Log in

Resin infusion-based processes simulation : coupled Stokes-Darcy flows in orthotropic preforms undergoing finite strain

  • Thematic Issue: Computational Methods in Manufacturing
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The aim of this paper is to present an overall model for the study of resin infusion based processes, in particular, the impregnation of a liquid resin through dry deformable fibrous reinforcements. This model can be appliedto a wide range of activities in many fields of engineering. Here, our approach based on a monolithic formulation in a level-set framework allows to strongly couple a Stokes-Darcy flow in low permeability media undergoing finite strains. The Stokes-Darcy coupled problem is solved using a mixed velocity-pressure formulation stabilized by a multi-scale method. A key feature of our approach is the fluid-solid interaction leading to couple a fluid/porous flow to a non-linear solid mechanics formulation. The interaction phenomenon due to the resin flow in the orthotropic highly compressible preform is based on both Terzaghi’s law and on explicit relation expressing permeability as function of porosity in finite strains mechanical framework. Finally, simulations of industrial design parts are performed to illustrate the abilities of our approach and the relevance of this fluid/porous-solid mechanics coupled problem for composite material process simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.hexcel.com

References

  1. Abouorm L, Blais M, Moulin N, Bruchon J, Drapier S (2014) A robust monolithic approach for resin infusion based process modelling. Key Eng Mater 611-612:306–315

    Article  Google Scholar 

  2. Abouorm L, Moulin N, Bruchon J, Drapier S (2013) Monolithic Approach of Stokes-Darcy Coupling for LCM Process Modelling. Key Eng Mater 554-557:447–455

    Article  MATH  Google Scholar 

  3. Abouorm L, Troian R, Drapier S, Bruchon J, Moulin N (2014) Stokes-darcy coupling in severe regimes using multiscale stabilisation for mixed finite elements: monolithic approach versus decoupled approach. Eur J of Comput Mech 23(3-4): 113–137

    MATH  Google Scholar 

  4. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the stokes equations. Calcolo 21 (4):337–344

    Article  MathSciNet  MATH  Google Scholar 

  5. Badia S, Codina R (2009) Unified stabilized finite element formulations for the stokes and the darcy problems. SIAM J Numer Anal 47(3):1971–2000

    Article  MathSciNet  MATH  Google Scholar 

  6. Badia S, Codina R (2010) Stabilized continuous and discontinuous galerkin techniques for darcy flow. Comput Methods Appl Mech Eng 199(2528):1654–1667

    Article  MathSciNet  MATH  Google Scholar 

  7. Badia S, Quaini A, Quarteroni A (2009) Coupling Biot and NavierStokes equations for modelling fluidporoelastic media interaction. J Comput Phys 228(21):7986–8014

    Article  MathSciNet  MATH  Google Scholar 

  8. Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30(01):197–207

    Article  Google Scholar 

  9. Besson J, Foerch R (1997) Large scale object-oriented finite element code design. Comput Methods Appl Mech Eng 142(1):165–187

    Article  MATH  Google Scholar 

  10. Bruchon J, Digonnet H, Coupez T (2009) Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach. International Journal for Numerical Methods in Engineering 78(8)

  11. Carman PC (1937) Fluid Flow Through Granular Beds. Trans Inst Chem Eng 15:150–166

    Google Scholar 

  12. Celle P, Drapier S, Bergheau JM (2008) Numerical aspects of fluid infusion inside a compressible porous medium undergoing large strains. Revue européenne de mécanique numérique. Resin Infusion-Based Processes Simulation 17(5-6-7):819–827

    Article  MATH  Google Scholar 

  13. Celle P, Drapier S, Bergheau JM (2008) Numerical modelling of liquid infusion into fibrous media undergoing compaction. Eur J Mech A Solids 27(4):647–661

    Article  MATH  Google Scholar 

  14. Dereims A, Drapier S, Bergheau JM, de Luca P (2015) 3d robust iterative coupling of Stokes, Darcy and solid mechanics for low permeability media undergoing finite strains. Finite Elem Anal Des 94:1–15

    Article  MathSciNet  Google Scholar 

  15. Discacciati M (2005) Iterative Methods for Stokes/Darcy Coupling. Domain Decomposition Methods in Science and Engineering, vol 40. Springer, Berlin Heidelberg, pp 563–570

    Book  MATH  Google Scholar 

  16. Discacciati M, Miglio E, Quarteroni A (2002) Mathematical and numerical models for coupling surface and groundwater flows. Appl Numer Math 43(12):57–74

    Article  MathSciNet  MATH  Google Scholar 

  17. Govignon Q, Bickerton S, Kelly PA (2010) Simulation of the reinforcement compaction and resin flow during the complete resin infusion process. Compos A: Appl Sci Manuf 41(1):45–57

    Article  Google Scholar 

  18. Gutowski TG, Morigaki T, Cai Z (1987) The Consolidation of Laminate Composites. J Compos Mater 21(2):172–188

    Article  Google Scholar 

  19. Masud A, Hughes T (2002) A stabilized mixed finite element method for darcy flow. Comput Methods Appl Mech Eng 191(39):4341–4370

    Article  MathSciNet  MATH  Google Scholar 

  20. Nunez R (2009) Problématique de la mesure de la perméabilité transverse de preformes fibreuses pour la fabrication de structures composites. Ph.D. thesis, École des Mines de Saint- Étienne

  21. Osher S, Fedkiw RP (2001) Level Set Methods: An Overview and Some Recent Results. J Comput Phys 169(2):463–502

    Article  MathSciNet  MATH  Google Scholar 

  22. Ouahbi T, Saouab A, Brard J, Ouagne P, Chatel S (2007) Modelling of hydro-mechanical coupling in infusion processes. Compos A: Appl Sci Manuf 38(7):1646–1654

    Article  Google Scholar 

  23. Pacquaut G, Bruchon J, Moulin N, Drapier S (2012) Combining a level-set method and a mixed stabilized p1/p1 formulation for coupling stokes-darcy flows. Int J Numer Methods Fluids 69(2):459–480

    Article  MathSciNet  MATH  Google Scholar 

  24. Sussman M, Smereka P, Osher S (1994) A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. J Comput Phys 114(1):146–159

    Article  MATH  Google Scholar 

  25. Terzaghi K (1956) Soil Mechanics in Engineering Practice. John Wiley and Sons

  26. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, Amsterdam; Boston

Download references

Acknowledgements

The authors would like to thank Hexcel Reinforcements Footnote 1 for its support to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Moulin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blais, M., Moulin, N., Liotier, PJ. et al. Resin infusion-based processes simulation : coupled Stokes-Darcy flows in orthotropic preforms undergoing finite strain. Int J Mater Form 10, 43–54 (2017). https://doi.org/10.1007/s12289-015-1259-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-015-1259-2

Keywords

Navigation