Skip to main content
Log in

Effect of slide motion on springback in 2-D draw bending for AHSS

  • Thematic Issue: Formability of metallic materials
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The springback behavior of two advanced high strength steel (AHSS) grades, DP 780 and DP 980, after different forming conditions, was investigated. 2-D draw bending experiments were performed using a direct-drive digital servo-press in three operation modes, conventional (V-mode), relaxation mode (Stepwise and U-mode) and the attach-detach (A-D mode). Numerical simulations were conducted to in an attempt to reproduce the results and to perform parametric studies. The material behavior was captured using the homogeneous anisotropic hardening (HAH) distortional plasticity approach together with the chord elastic modulus model. In addition, the stress relaxation effects were implemented in the code by using a creep law in order to study the influence of a stepwise slide motion mode as well as holding at the bottom dead center. Both experimental and finite element (FE) simulation results demonstrate that detachment of tools from the work-piece was effective to reduce the springback while the effect of stress relaxation was insignificant. The numerical analysis was validated and successfully explained the importance of a forming path change on the final stress state. Based on the result of this study, a new method to reduce springback was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Wagoner RH, Lim H, Lee M-G (2013) Advanced Issues in springback. Int J Plast 45:3–20

    Article  Google Scholar 

  2. Banabic D (2010) Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation. Springer, Berlin

    Book  Google Scholar 

  3. Lingbeek RA, Gan W, Wagoner RH, Meinders T, Weinders J (2008) Theoretical verification of the displacement adjustment and springforward algorithms for springback compensation. Int J Mater Form 1(3):159–168

    Article  Google Scholar 

  4. Osakada K, Mori K, Altan T, Groche P (2011) Mechanical servo press technology for metal forming. CIRP Annals-Manuf Technol 60:651–672

    Article  Google Scholar 

  5. Murata C, Yabe J, Endou J, Hasegawa K (2013) Direct Drive Digital Servo Press with High Parallel Control. AIP Conf Proc 1567:1016–1019

    Article  Google Scholar 

  6. Mori K, Akita K, Abe Y (2007) Springback behaviour in bending of ultra-high strength steel sheets using CNC servo press. Int J Mach Tool Manuf 47:321–325

    Article  Google Scholar 

  7. Suganuma T (2008) Application of servo press to sheet metal forming. J Jpn Soc Technol Plast 49:118–122

    Google Scholar 

  8. Majidi O, Bong H, Barlat F, Lee M-G, Kim C (2012) Effect of slide velocity on springback in U-draw bending of AHSS sheets with digital servo-press. Steel res Int 83:347–350

    Google Scholar 

  9. Chaboche JL (1986) Time-independent constitutive theories for cyclic plasticity. Int J Plast 2:149–188

    Article  MATH  Google Scholar 

  10. Chung K, Lee M-G, Kim D, Kim C, Wenner ML, Barlat F (2005) Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions – Part I: theory and formulation. Int J Plast 21:861–882

    MATH  Google Scholar 

  11. Yoshida F, Uemori T, Fujiwara K (2002) Elastic–plastic behavior of steel sheets under in-plane cyclic tension–compression at large strain. Int J Plast 18:633–659

    Article  MATH  Google Scholar 

  12. Zang S-L, Lee M-G, Kim J-H (2013) Evaluating the significance of hardening behavior and unloading modulus under strain reversal in sheet springback prediction. Int J Mech Sci 77:194–204

    Article  Google Scholar 

  13. Korkolis DN, Kuwabara T (2013) Biaxial unloading and springback behavior of dual-phase DP590 steel using cruciform specimens. AIP Conf Proc 1567:700–704

    Article  Google Scholar 

  14. Cleveland RM, Ghosh AK (2002) Inelastic effects on springback in metals. Int J Plast 18:769–785

    Article  MATH  Google Scholar 

  15. Yu HY (2009) Variation of elastic modulus during plastic deformation and its influence on springback. J Mater Des 30:846–850

    Article  Google Scholar 

  16. Eggertsen PA, Mattiasson K (2010) On the Modeling of the Unloading Modulus for Metal Sheets. Int J Mater Form 3(1):127–130

    Article  Google Scholar 

  17. Eggertsen PA, Mattiasson K (2011) On the identification of kinematic hardening material parameters for accurate springback predictions. Int J Mater Form 4:103–120

    Article  Google Scholar 

  18. Lee J-W, Lee J-Y, Barlat F, Wagoner RH, Chung K, Lee M-G (2013) Extension of quasi-plastic–elastic approach to incorporate complex plastic flow behavior– application to springback of advanced high-strength steels. Int J Plast 45:140–159

    Article  Google Scholar 

  19. Chongthairungruang B, Uthaisangsuk V, Suranuntchai S, Jirathearanat S (2013) Springback prediction in sheet metal forming of high strength steels. J Mater Des 50:253–266

    Article  Google Scholar 

  20. Barlat F, Gracio JJ, Lee M-G, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plast 27:1309–1327

    Article  MATH  Google Scholar 

  21. Barlat F, Ha J, Grácio JJ, Lee M-G, Rauch EF, Vincze G (2013) Extension of homogeneous anisotropic hardening model to cross loading with latent effects. Int J Plast 46:130–142

    Article  Google Scholar 

  22. Lee J-Y, Lee J-W, Lee M-G, Barlat F (2012) An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending. Int J Solid Struct 49:3562–3572

    Article  Google Scholar 

  23. Tamai Y, Yamasaki Y, Yoshitake A, Imura T (2010) Improvement of formability in stamping of steel sheets by motion control of servo press. Steel Res Int 81(9):686–689

    Google Scholar 

  24. ABAQUS User’s Manual Version 6.10 (2010), Hibbit, Karlsson & Sorensen Inc, Rhode Island

  25. Chung K, Kuwabara T, Verma RK, Park T (2011) Numisheet 2011 Benchmark 4: Pre-strain effect on spring-back of 2D draw bending. In: Huh H et al (eds) Proceedings 8th NUMISHEET conference. Seoul, Korea, pp 171–175

    Google Scholar 

  26. Choi J (2013) Simple shear flow behavior for Advanced High Strength Steel (AHSS) sheets, in Graduate Institute of Ferrous Technology. Pohang University of, Science and Technology (POSTECH), p 65

    Google Scholar 

  27. Norton FH (1929) Creep of steel at high temperatures. McGraw-Hill, New York

    Google Scholar 

  28. Bailey RW (1930) Creep of steel under simple and compound stress. Engineering 121:129–265

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to POSCO for financial support. MGL would like to thank the Korean Ministry of Education, Science and Technology for ERC grant NRF-2012R1A5A1048294. O. Majidi wishes to thank Dr. Jinwoo Lee and J.Y Lee for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédéric Barlat or Myoung-Gyu Lee.

Appendix. The homogenous anisotropic hardening (HAH) model

Appendix. The homogenous anisotropic hardening (HAH) model

The fluctuating component of the yield function in Eq. (2), Φ h , can be expanded as:

$$ {\varPhi}_h={\left[{\mathrm{f}}_1{\hat{\boldsymbol{h}}}^s:\boldsymbol{s}-{\mathrm{f}}_1\left|{\hat{\boldsymbol{h}}}^s:\boldsymbol{s}\right|\left|{}^q+\right|{\mathrm{f}}_2{\hat{\boldsymbol{h}}}^s:\boldsymbol{s}-{\mathrm{f}}_2\left|{\hat{\boldsymbol{h}}}^s:\boldsymbol{s}\right|\Big|{}^q\right]}^{\frac{1}{q}} $$
(A-1)

The state variables, f1 and f2, depend on another sets of state variables, g k :

\( {f}_k={\left[\frac{1}{g_k^q}-1\right]}^{\frac{1}{q}} \) for k = 1 and 2. (A - 2)

Based on the sign of double dot product, \( {\hat{\boldsymbol{h}}}^s:\boldsymbol{s} \), the model gives the following relationships:

If \( {\hat{\boldsymbol{h}}}^s:\boldsymbol{s}\ge 0 \):

$$ \frac{d{g}_1}{d\epsilon }={k}_2\left({k}_3\frac{\sigma_0}{\sigma }-{g}_1\right) $$
(A-3)
$$ \frac{d{g}_2}{d\epsilon }=\frac{k_1\left({g}_3-{g}_2\right)}{g_2} $$
(A-4)
$$ \frac{d{g}_4}{d\epsilon }={k}_5\left({k}_4-{g}_4\right) $$
(A-5)
$$ \frac{d{\hat{\boldsymbol{h}}}^s}{d\epsilon }=k\left[\hat{\boldsymbol{s}}-\frac{8}{3}{\hat{\boldsymbol{h}}}^s\left(\hat{\boldsymbol{s}}:{\hat{\boldsymbol{h}}}^s\right)\right] $$
(A-6)

If \( {\hat{\boldsymbol{h}}}^s:\boldsymbol{s}<0 \):

$$ \frac{d{g}_1}{d\epsilon }=\frac{k_1\left({g}_4-{g}_1\right)}{g_1} $$
(A-7)
$$ \frac{d{g}_2}{d\epsilon }={k}_2\left({k}_3\frac{\sigma_0}{\sigma }-{g}_2\right) $$
(A-8)
$$ \frac{d{g}_3}{d\epsilon }={k}_5\left({k}_4-{g}_3\right) $$
(A-9)
$$ \frac{d{\hat{\boldsymbol{h}}}^s}{d\epsilon }=k\left[-\hat{\boldsymbol{s}}+\frac{8}{3}{\hat{\boldsymbol{h}}}^s\left(\hat{\boldsymbol{s}}:{\hat{\boldsymbol{h}}}^s\right)\right] $$
(A-10)

where σ 0 and σ are initial and effective flow stress, respectively. g 1 to g 4 are state variables and k and k1~5 are constants, which can be obtained from either loading-unloading-loading tension or forward-reverse simple shear experiments. The first coefficient, k, controls the rotation rate of the microstructure deviator, \( {\hat{\boldsymbol{h}}}^s. \) Coefficients k1~3 control the new flow stress and hardening rate after each load variation. If permanent softening is considered, coefficients k4 and k5 control this effect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, O., Barlat, F. & Lee, MG. Effect of slide motion on springback in 2-D draw bending for AHSS. Int J Mater Form 9, 313–326 (2016). https://doi.org/10.1007/s12289-014-1214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-014-1214-7

Keywords

Navigation