Skip to main content
Log in

Parametric modeling of an electromagnetic compression device with the proper generalized decomposition

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Optimization of forming processes seeks an optimal choice of many process parameters. In Electromagnetic Material Forming (EMF), parameters associated to the geometry of the forming device or related to the generation of the pulsed currents have to be set, and are of primary importance to achieve the proper geometry of the formed part. Usual optimization procedures proceed by defining a trial choice of the set of parameters and then evaluate the optimality of a given cost function computed from a direct analysis. This iterative process requires many assessments of the cost function and may lead to a prohibitive computation cost since the direct analysis may involve a structural analysis. Others approaches have been proposed to circumvent this problem; based on a separated representation of the solution, the Proper Generalized Decomposition allows for a parametric resolution by introducing optimization parameters as extra-coordinates of the problem, hence the optimization procedure reduces to a simple post-treatment of the multidimensional numerical solution. The aim of this work is to develop a numerical tool dedicated to the optimization of the design of an electromagnetic compression device. This tool should enable to optimize process parameters of the generator and geometrical parameters of the electromagnetic forming device by solving the set of electromagnetic equations in quasistatics. To this end, we take advantage of the Proper Generalized Decomposition (PGD) to perform a parametric resolution. We show solutions computed with a parameterization of the discharged current, and with a parameterization of the geometry considering a multi-layered structure. Finally, an example of optimization procedure is shown on the latter solution, seeking the configuration maximising the radial component of the resultant compression force applied on the part to be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. COMSOL® AC/DC (2012) User’s manual

  2. Paraview 4.2 (2015). http://www.paraview.org/

  3. Ammar A, Normandin M, Daim F, Gonzalez D, Cueto E, Chinesta F (2010) Non incremental strategies based on separated representations: applications in computational rheology. Commun Math Sci 8(3):671–695

    Article  MathSciNet  MATH  Google Scholar 

  4. Arora J, Wang Q (2005) Review of formulations for structural and mechanical system optimization. Struct Multidiscip Optim 30(4):251–272

    Article  MathSciNet  MATH  Google Scholar 

  5. Balanethiram V, Daehn G (1992) Enhanced formability of interstitial free iron at high strain rates. Scr Metall Mater 27:1783–1789

    Article  Google Scholar 

  6. Balanethiram V, Daehn G (1994) Hyperplasticity-increased forming limits at high workpiece velocities. Scr Metall Mater 31:515–520

    Article  Google Scholar 

  7. Bognet B, Bordeu F, Chinesta F, Leygue A, Poitou A (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201:1–12

    Article  Google Scholar 

  8. Bordeu F (2013) Pxdmf tools for paraview 3.98.1. http://rom.research-centrale-nantes.com/ http://rom.research-centrale-nantes.com/

  9. Brett W, Tamara G, et al. (2012) Matlab tensor toolbox version 2.5. http://www.sandia.gov/%7Etgkolda/TensorToolbox/

  10. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput methods Eng 17 (4):327–350

    Article  MathSciNet  MATH  Google Scholar 

  11. Chinesta F, Leygue A, Bognet B, Ghnatios C, Poulhaon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2014) First steps towards an advanced simulation of composites manufacturing by automated placement. Int J Mater Form 7(1):81–92

    Article  Google Scholar 

  12. Chinesta F, Leygue A, Bordeu F, Aguado J, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-Based computational vademecum for efficient design, optimization and control. Archives of Computational Methods in Engineering 20(1):31–59

    Article  MathSciNet  Google Scholar 

  13. El-Azab A, Garnich M, Kapoor A (2003) Modeling of the electromagnetic forming of sheet metals: state-of-the-art and future needs. J Mater Process Technol 142:744–754

    Article  Google Scholar 

  14. Eringen A, Maugin G (1990) Electrodynamics of continua, vol I, II. Springer, New York

    Book  Google Scholar 

  15. Falcó A On the optimization problems for the proper generalized decomposition and the n-best term approximation. In: Proceedings of the 7th international conference on engineering computational technology

  16. Fenton G, Daehn G (1998) Modeling of electromagnetically formed sheet metal. J Mater Process Technol 75:6–16

    Article  Google Scholar 

  17. Feynman R, Leighton R, Sands M (1965) The Feynman lectures on pPhysics: Vol. 2: The electromagnetic field. Addison-Wesley

  18. Ghnatios C, Chinesta F, Cueto E, Leygue A, Poitou A, Breitkopf P, Villon P (2011) Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: Application to pultrusion. Compos A: Appl Sci Manuf 42(9):1169–1178

    Article  Google Scholar 

  19. Ghnatios C, Masson F, Huerta A, Leygue A, Cueto E, Chinesta F (2012) Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput Methods Appl Mech Eng 213:29–41

    Article  Google Scholar 

  20. Giner E, Bognet B, Rodenas J, Leygue A, Fuenmayor F, Chinesta F (2013) The proper generalized decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics. Int J Solids Struct 50:1710–1720

    Article  Google Scholar 

  21. Harshman R, Lundy M (1994) PARAFAC: Parallel factor analysis. Comput Stat Data Anal 18(1):39–72

    Article  MATH  Google Scholar 

  22. Henneron T, Clénet S Proper generalized decomposition method to solve quasi static field problems

  23. Heyberger C, Boucard P, Néron D (2012) Multiparametric analysis within the proper generalized decomposition framework. Comput Mech 49:277–289

    Article  MATH  Google Scholar 

  24. Lathauwer LD, Moor BD, Vandewalle J (2000) A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 21(4):1253–1278

    Article  MathSciNet  MATH  Google Scholar 

  25. Leygue A, Verron E (2010) A first step towards the use of Proper General Decomposition. Methods for structural optimization. Archives of Computational Methods in Engineering 17:465–472

    Article  MathSciNet  MATH  Google Scholar 

  26. Nouy A (2010) A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23-24):1603–1626

    Article  MathSciNet  MATH  Google Scholar 

  27. Nouy A (2010) Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Archives of Computational Methods in Engineering 17:403–434

    Article  MathSciNet  MATH  Google Scholar 

  28. Ogden R (2009) Incremental elastic motions superimposed on a finite deformation in the presence of an electromagnetic field. International Journal of Non-Linear Mechanics 44:570–580

    Article  Google Scholar 

  29. Pruliere E, Chinesta F, Ammar A (2010) On the deterministic solution of multidimensional parametric models using the proper generalized decomposition. Math Comput Simul 81:791–810

    Article  MathSciNet  MATH  Google Scholar 

  30. Psyk V, Rich D, Kinsey B, Tekkaya AE, Kleiner M (2011) Electromagnetic metal forming - A review. J Mater Process Technol 211:787–829

    Article  Google Scholar 

  31. Robin V, Feulvarch E, Bergheau J (2008) Modélisation tridimensionnelle du procédé de mise en forme électromagnétique. Mécanique & Industries 9(2):133–138

    Article  Google Scholar 

  32. Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Archives of Computational methods in Engineering 13(1):91–128

    Article  MathSciNet  MATH  Google Scholar 

  33. Stiemer M, Unger J, Svendsen B, Blum H (2006) Algorithmic formulation and numerical implementation of coupled electromagnetic-inelastic continuum models for electromagnetic metal forming. Int J Numer Methods Eng 68:1301–1328

    Article  MathSciNet  MATH  Google Scholar 

  34. Svendsen B, Chanda T (2005) Continuum thermodynamic formulation of models for electromagnetic thermoinelastic solids with application in electromagnetic metal forming. Contin Mech Thermodyn 17(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  35. Thomas J, Triantafyllidis N (2009) On electromagnetic forming processes in finitely strained solids: Theory and examples. Journal of the Mechanics and Physics of Solids 57:1391–1416

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heuzé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuzé, T., Leygue, A. & Racineux, G. Parametric modeling of an electromagnetic compression device with the proper generalized decomposition. Int J Mater Form 9, 101–113 (2016). https://doi.org/10.1007/s12289-014-1212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-014-1212-9

Keywords

Navigation