Skip to main content

Advertisement

Log in

Residual stresses and microstructure in Powder Bed Direct Laser Deposition (PB DLD) samples

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In the present study, residual stresses in the Powder Bed Direct Laser Deposition (PB DLD) built parts were investigated using X-ray diffraction strain measurement and finite element simulation. The microstructure and texture of the DLD built parts were studied, indicating that the vertically elongated grains have preferred orientation of (001)-type pointing in the growth direction in the nickel superalloy C263. A conceptual model of residual stress generation was proposed using fictitious thermal expansion based on the argument that residual stresses arise from strain incompatibility that is “frozen in” within the work piece during fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ASTM (1994) Standard terminology for additive manufacturing technologies, ASTM International document F2792-10, West Conshohocken, PA

  2. EOS GmbH: http://www.eos.info/en/products/systems-equipment/metal-laser-sintering-systems.html, Krailling, Germany

  3. Vilar R (1999) Laser cladding. J Laser Appl 11:64–79

    Article  Google Scholar 

  4. Lyon S, Frampton L (2010) Statement of work for the optimisation of Powder Bed Direct Laser Deposition (PB DLD) in C263. RR Internal Report, MFR47541, Issue 2

  5. Dai K, Shaw L (2004) Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater 52:69–80

    Article  Google Scholar 

  6. Dai K, Shaw L (2006) Parametric studies of multi-material laser densification. Mater Sci Eng, A 430:221–229

    Article  Google Scholar 

  7. Dai K, Shaw L (2001) Thermal and stress modelling of multi-material laser processing. Acta Mater 49:4171–4181

    Article  Google Scholar 

  8. Ghosh S, Choi J (2006) Modelling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process. J Heat Trans-T ASME 128:662–679

    Article  Google Scholar 

  9. Chen TB, Zhang YW (2006) Three-dimensional modelling of selective laser sintering of two-component metal powder layers. J Manu Sci Eng-T ASME 128:299–306

    Article  Google Scholar 

  10. Matsumoto M, Shiomi M, Osakada K, Abe F (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tool Manu 42:61–67

    Article  Google Scholar 

  11. Wang L, Felicelli S, Gooroochurn Y, Wang PT, Horstemeyer MF (2008) Optimization of the lens process for steady molten pool size. Mater Sci Eng, A 474:148–156

    Article  Google Scholar 

  12. Zaeh MF, Lutzmann S (2010) Modelling and simulation of electron beam melting. Pro Enging Res Dev 4:15–23

    Article  Google Scholar 

  13. Shen NG, Kevin C (2012) Simulations of thermo-mechanical characteristics in electron beam additive manufacturing, ASME 2012 international mechanical engineering congress & exposition. Houston, TX

    Google Scholar 

  14. Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Pro Enging Res Dev 4:35–45

    Article  Google Scholar 

  15. Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng, A 509:98–104

    Article  Google Scholar 

  16. Gaumann C, Bezencon C, Canalis P, Kurz W (2001) Single crystal laser deposition of superalloys: processing—microstructure maps. Acta Mater 49:1051–1062

    Article  Google Scholar 

  17. Zhao XM, Chen J, Lin X, Huang WD (2008) Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater Sci Eng, A 478:119–124

    Article  Google Scholar 

  18. Li LJ (2006) Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping. J Mater Sci 41:7886–7893

    Article  Google Scholar 

  19. Moat RJ, Pinkerton AJ, Li L, Withers PJ, Preuss M (2009) Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy. Acta Mater 57:1220–1229

    Article  Google Scholar 

  20. Goldak J, Chakravarti A, Bibby M (1984) New finite element model for welding heat sources. Metall Mater Trans B 15:299–305

    Article  Google Scholar 

  21. Goldak J, McDill M, Oddy A, House R, Chi X, Bibby M (1986) Computational heat transfer for weld mechanics. ASM International, Ohio pp. 15–20

  22. Lindgren LE (2001) Finite element modeling and simulation of welding part 1: increased complexity. J Therm Stresses 24:141–192

    Article  Google Scholar 

  23. Truman CE, Smith MC (2009) Editorial: the NeT residual stress measurement and modelling round robin on a single weld bead-on-plate specimen. Intl J Pres Ves Pip 86:1–2

    Article  Google Scholar 

  24. ABAQUS Users’ Manual, v.6.4 (2003) Hibbitt, Karlsson & Sorensen Inc., Providence, RI

  25. William H. Cubberly et al. (1978) Properties and selection: irons and steels, ASM International, ASM Metals handbook. Vol. 1. Ohio

  26. ThyssenKrupp VDM (1993) Material data sheet no. 4020 Nicrofer 5120 CoTi alloy C-263

  27. Shan X, Davies CM, Wangsdan T, O’Dowd NP, Nikbin KM (2009) Thermo-mechanical modelling of a single-bead-on-plate weld using the finite element method. Intl J Pres Ves Pip 86:110–121

    Article  Google Scholar 

  28. Withers PJ, Bhadeshia HKDH (2001) Residual stress part 1 - measurement techniques. Mater Sci Tech 17:355–365

    Article  Google Scholar 

  29. De Freitas M, Pereira MS, Michaud H, Pantelis D (1993) Analysis of residual stresses induced by laser processing. Mater Sci Eng, A 167:115–122

    Article  Google Scholar 

  30. De Oliveira U, Ocelík V, De Hosson JTM (2006) Residual stress analysis in Co-based laser clad layers by laboratory X-rays and synchrotron diffraction techniques. Surf Coat Tech 201:533–542

    Article  Google Scholar 

  31. Korsunsky AM, Wells KE, Withers PJ (1998) Mapping two-dimensional state of strain using synchrotron X-ray diffraction. Scripta Mater 39:1705–1712

    Article  Google Scholar 

  32. Korsunsky AM, Baimpas N, Song X, Belnoue J, Hofmann F, Abbey B, Xie MY, Andrieux J, Buslaps T, Neo TK (2011) Strain tomography of polycrystalline zirconia dental prostheses by synchrotron X-ray diffraction. Acta Mater 59:2501–2513

    Article  Google Scholar 

  33. Daymond MR, Bourke MAM, Von Dreele RB, Clausen B, Lorentzen T (1997) Use of rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra. J Appl Phys 82:1554–1562

    Article  Google Scholar 

  34. Frampton L (2009) Interim report of initial mechanical test data for Direct Metal Laser Sintered (DMLS) C263 material, RR internal report, MFR47228, Issue 1

Download references

Acknowledgments

Authors would like to acknowledge the funding support of the EPSRC under projects EP/G035059/1 and EP/H003215/1, and Diamond Light Source for the provision beam time under allocations EE6974 and EE7016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Xie, M., Hofmann, F. et al. Residual stresses and microstructure in Powder Bed Direct Laser Deposition (PB DLD) samples. Int J Mater Form 8, 245–254 (2015). https://doi.org/10.1007/s12289-014-1163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-014-1163-1

Keywords

Navigation