Skip to main content
Log in

A strain rate dependent anisotropic hardening model and its validation through deep drawing experiments

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In the present work, a modified version of the widely used Yld2000-2d yield function and its implementation into the commercial FE-code LS-Dyna is presented. The difference to the standard formulation lies in the dependency of the function parameters on the equivalent plastic strain. Furthermore, strain rate dependency is incorporated. After a detailed description of the model and the identification of the parameters, the numerical implementation i.e., the stress-update algorithm used for the implementation is explained. In order to validate the model, two different materials, namely Formalex™5x, a 5182-based aluminum alloy and a DC05 mild steel were characterized. The results of the tensile and hydraulic bulge tests are presented and used for the parameter identification. The experimental curves are reproduced by means of one element tests using the standard and modified model to demonstrate the benefit of the modifications. For validation purposes, cross die geometries were drawn with both materials. The outer surface strains were measured with an optical measurement system. The measured major and minor strains were compared to the results of simulations using the standard and the modified Yld2000-2d model. A significant improvement in prediction accuracy has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Kuwabara T (2007) Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations. Int J Plasticity 23(3):385–419

    Article  MATH  MathSciNet  Google Scholar 

  2. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. P Roy Soc Lond A Mat 193(1033):281–297

    Article  MATH  Google Scholar 

  3. Hill R (1979) Theoretical plasticity of textured aggregates. Math Proc Cambridge 85(01):179–191

    Article  MATH  Google Scholar 

  4. Hill R (1990) Constitutive modelling of orthotropic plasticity in sheet metals. J Mech Phys Solids 38(3):405–417

    Article  MATH  MathSciNet  Google Scholar 

  5. Barlat F, Lian K (1989) Plastic behavior and stretchability of sheet metals. Part I:A yield function for orthotropic sheets under plane stress conditions. Int J Plasticity 5(1):51–66

    Article  Google Scholar 

  6. Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plasticity 7(7):693–712

    Article  Google Scholar 

  7. Barlat F, Maeda Y, Chung K, Yanagawa M, Brem J, Hayashida Y, Lege D, Matsui K, Murtha S, Hattori S, Becker R, Makosey S (1997) Yield function development for aluminum alloy sheets. J Mech Phys Solids 45(1112):1727–1763

    Article  Google Scholar 

  8. Barlat F, Brem J, Yoon J, Chung K, Dick R, Lege D, Pourboghrat F, Choi SH, Chu E (2003) Plane stress yield function for aluminum alloy sheetsPart 1:theory. Int J Plasticity 19(9):1297–1319

    Article  MATH  Google Scholar 

  9. Banabic D, Kuwabara T, Balan T, Comsa D, Julean D (2003) Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions. Int J Mech Sci 45(5):797–811

    Article  MATH  Google Scholar 

  10. Banabic D, Aretz H, Comsa D, Paraianu L (2005) An improved analytical description of orthotropy in metallic sheets. Int J Plasticity 21(3):493–512

    Article  MATH  Google Scholar 

  11. Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plasticity 22(7):1171–1194

    Article  MATH  Google Scholar 

  12. Chaboche J (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plasticity 5(3):247–302

    Article  MATH  Google Scholar 

  13. Yoshida F, Uemori T, Fujiwara K (2002) Elasticplastic behavior of steel sheets under in-plane cyclic tensioncompression at large strain. Int J Plasticity 18(56):633–659

    Article  MATH  Google Scholar 

  14. Aretz H (2008) A simple isotropic-distortional hardening model and its application in elasticplastic analysis of localized necking in orthotropic sheet metals. Int J Plasticity 24(9):1457–1480

    Article  MATH  Google Scholar 

  15. Barlat F, Gracio JJ, Lee MG, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plasticity 27(9):1309–1327

    Article  MATH  Google Scholar 

  16. Hu W (2007) Constitutive modeling of orthotropic sheet metals by presenting hardening-induced anisotropy. Int J Plasticity 23(4):620–639

    Article  MATH  Google Scholar 

  17. Lopes A, Barlat F, Gracio J, Ferreira Duarte J, Rauch E (2003) Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear. Int J Plasticity 19(1):1–22

    Article  MATH  Google Scholar 

  18. Hora P, Hochholdinger B, Mutrux A, Tong L (2009) Modeling of anisoptropic hardening behavior based on Barlat 2000 Yield Locus Description. In: Proceedings 3rd formation technical forum Zurich 2009 (Zu̇rich), Switzerland. Institute of Virtual Manufacturing, Zu̇rich, pp 21–29

  19. Wang H, Wan M, Wu X, Yan Y (2009) The equivalent plastic strain-dependent yld2000-2d yield function and the experimental verification. Comp Mater Sci 47(1):12–22

    Article  Google Scholar 

  20. Hershey A (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech 21(3):226–240

    Google Scholar 

  21. Hosford WF (1972) A generalized isotropic yield criterion. J Appl Mech 39(2):607

    Article  Google Scholar 

  22. Logan RW, Hosford WF (1980) Upper-bound anisotropic yield locus calculations assuming 111-pencil glide. Int J Mech Sci 22(7):419–430

    Article  Google Scholar 

  23. Kuwabara T, Hashimoto K, Iizuka E, Yoon JW (2011) Effect of anisotropic yield functions on the accuracy of hole expansion simulations. J Mater Process Tech 211(3):475–481

    Article  Google Scholar 

  24. Kuwabara T, Ikeda S, Kuroda K (1998) Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. J Mater Process Tech 8081:517–523

    Article  Google Scholar 

  25. Yoon JW, Barlat F, Dick RE, Chung K, Kang TJ (2004) Plane stress yield function for aluminum alloy sheetsPart II: FE formulation and its implementation. Int J Plasticity 20(3):495–522

    Article  MATH  Google Scholar 

  26. Yoon JW, Yang DY, Chung K (1999) Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials. Comput Method Appl M 174(1-2):23–56

    Article  MATH  Google Scholar 

  27. Portevin A, Le Chatelier F (1923) Sur un phnomne observ lors de l’essai de traction d’alliages en cours de transformation. CR Acad Sci Paris 176:507–510

    Google Scholar 

  28. Cowper G, Symonds P (1957) Strain hardening and strain rate 506 effects in the impact loading of the cantilever beams. Tech. rep., 28 Brown University, Division of Applied Mathematics, Providence, RI

  29. Peters P, Leppin C, Hora P (2011) Method for the evaluation of the hydraulic bulge test. In: Proceedings IDDRG 2011, international deep drawing research group

  30. Hockett JE, Sherby OD (1975) Large strain deformation of poly crystalline metals at low homologous temperatures. J Mech Phys 23:87–98

    Article  Google Scholar 

  31. Lingbeek RA, Meinders T, Rietman A (2008) Tool and blank interaction in the cross-die forming process. Int J Mater Form 1(1):161–164

    Article  Google Scholar 

  32. Niazi MS, Wisselink HH, Meinders T, Hutink J (2012) Failure predictions for DP steel cross-die test using anisotropic damage. Int J Damage Mech 21(5):713–754

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out in the framework of the CTI (Commission for Technology and Innovation, Swiss Federation) project 10929.1 PFIW-IW. The financial support of the CTI is gratefully acknowledged. Moreover, the authors thank Martin Grünbaum and Jürgen Ehrenpfort from Daimler AG, as well as the teams of Constellium CRV and Suisse Technology Partners AG for providing the cross die test results for steel, respectively aluminum. Furthermore, the authors thank GOM for assisting with the evaluation of the optical measurements. Finally, the authors very much appreciate the general support by AutoForm, Constellium CRV (Centre Recherche de Voreppe) and Synthes, who are the industrial partners of the CTI project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, P., Manopulo, N., Lange, C. et al. A strain rate dependent anisotropic hardening model and its validation through deep drawing experiments. Int J Mater Form 7, 447–457 (2014). https://doi.org/10.1007/s12289-013-1140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-013-1140-0

Keywords

Navigation