Skip to main content
Log in

Mechanical and damage analysis along a flat-rolled wire cold forming schedule

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Numerical simulation is used to study patented high-C steel flat-rolled wire cold forming processes. An elasto-plastic power law, identified from mechanical tests, is used into Forge2005® finite element (FEM) package in order to describe the material behaviour during wire drawing followed by cold rolling. A through-process approach has been favoured, transferring residual wire-drawing stresses and strain into the flat-rolling preform. This mechanical analysis, associated with a triaxiality study, points to dangerous areas where fracture may initiate due to high tensile stresses. Lemaître’s isotropic damage criterion, including crack closure effect, a -1/3 cut-off value of stress triaxiality, and tension/compression damage asymmetry, has been used and has confirmed the previous analysis. A number of non-coalesced voids nucleated on inclusions have been observed in the Scanning Electron Microscopy (SEM), especially in high-deformation zones (“blacksmith’s cross”). Their evolution has been simulated in the FEM model using spherical numerical markers, which deform into oblate or prolate ellipsoids. The deformation-induced morphological evolution of voids observed in the SEM compares well with the geometrical evolution of the markers, which suggests that the morphologies observed do not result from micro-crack propagation, but from material transport of the nucleated voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

x :

Scalar

x ij :

Component of a second order tensor x

\( \mathop{x}\limits^{ \bullet } \) :

Material time derivative of x \( \left( {\mathop{x}\limits^{ \bullet } = dx/dt} \right) \)

x kk :

Trace of x

δ ij :

Kronecker delta, \( {\delta_{{ij}}} = 1\,if\,i = j\,and\,{\delta_{{ij}}} = 0\,if\,i \ne j \)

\( \left\langle x \right\rangle \) :

Macauley bracket, \( \left\langle x \right\rangle = x\,if\,x \geqslant 0\,and\,\left\langle x \right\rangle = 0\,if\,x < 0 \)

\( {\left\langle x \right\rangle^{ + }}or\left\langle x \right\rangle_{{ij}}^{ + } \) :

Positive part in terms of principal component of tensor x

\( {\left\langle x \right\rangle^{ - }}or\left\langle x \right\rangle_{{ij}}^{ - } \) :

Negative part in terms of principal component of tensor x

a :

Behaviour law parameter

E :

Young’s modulus of elasticity

h :

Microdefect closure parameter

K :

Behaviour law parameter

\( \overline m \) :

Friction factor

n :

Strain hardening index in the behaviour law

R :

Current wire radius

R 0 :

Initial wire radius

R a :

Centre Line Average (CLA) roughness

R ν :

Triaxiality function

s :

Unified damage law exponent

S :

Energetic damage law parameter

Tr :

Stress triaxiality

Y :

Energy density release rate

ε eq :

Equivalent strain

\( {\mathop{\varepsilon }\limits^{ \bullet }_{{eq}}} \) :

Equivalent strain rate

\( {\mathop \varepsilon \limits^ \bullet }^{p}_{{ij}} \) :

Plastic strain rate

\( {\mathop \varepsilon \limits^ \bullet }^{p}_{{eq}} \) :

Equivalent plastic strain rate

ν :

Poisson’s ratio of elastic contraction

ρ:

Mass density

σ, σ ij :

Uniaxial and tensorial Cauchy stresses

\( {\tilde{\sigma }_{{ij}}} \) :

Effective stress

σ y :

Tensile yield stress

σ eq :

Equivalent stress

\( {\tilde{\sigma }_{{eq}}} \) :

Effective equivalent stress

σ H :

Hydrostatic stress

τ c :

Shear stress

Ψ*:

Gibbs specific free enthalpy

\( \psi_e^{*} \) :

Elastic specific free enthalpy

Ψ p :

Plastic state potential (Helmholtz free energy)

Ψ T :

Thermal state potential

References

  1. Pokorny A, Pokorny J (1985) Inclusions non métalliques dans l’acier. Techniques de l’Ingénieur, M220, in French

  2. Avitzur B (1963) Analysis of wire drawing and extrusion through conical dies of small cone angle. J Eng Ind 89:89–96

    Article  Google Scholar 

  3. Avitzur B (1968) Analysis of central bursting defects in extrusion and wire drawing. Trans ASME, J Eng Ind 90:79

    Article  Google Scholar 

  4. Zimerman Z, Avitzur B (1970) Analysis of the effect of strain hardening on central bursting defects in drawing and extrusion. Trans ASME, J Eng Ind 92:135

    Article  Google Scholar 

  5. Zimerman Z, Darlington H, Kottkamp EH (1971) Selection of operating parameters to prevent central bursting defects during cold extrusion. In: Hoffmanner AL (ed) Metal forming: interrelation between theory and practice. Plenum, New York, p 47

    Chapter  Google Scholar 

  6. Chen CC, Si Oh, Kobayashi S (1979) Ductile fracture in axisymmetric extrusion and drawing. Trans ASME, J Eng Ind 101(2):36–44

    Google Scholar 

  7. Chevalier L (1992) Prediction of defects in metal forming: application to wire drawing. J Mater Process Technol 32:145–153

    Article  Google Scholar 

  8. Choi S, Lee YS, Oh HK (1998) Ductile fracture in axisymmetric extrusion. J Mater Process Technol 74:263–267

    Article  Google Scholar 

  9. Ko DC, Kim BM (2000) The prediction of central burst defects in extrusion and wire drawing. J Mater Process Technol 102:19–24

    Article  Google Scholar 

  10. Mariage JF, Saanouni K, Lestriez P (2002) Numerical simulation of extrusion with central bursting prediction by continuum damage mechanics. In: Proceeding of the 5th international ESAFORM Conference on Material Forming, Krakow, 475–478

  11. Saanouni K, Mariage JF, Cherouat A, Lestriez P (2004) Numerical prediction of discontinuous central bursting in axisymmetric forward extrusion by continuum damage mechanics. Comput Struct 82:2309–2332

    Article  Google Scholar 

  12. Gouveia BPPA, Rodrigues JMC, Martins PAF (1996) Fracture predicting in bulk metal forming. Int J Mech Sci 38(4):361–372

    Article  MATH  Google Scholar 

  13. McAllen P, Phelan P (2007) Numerical analysis of axisymmetric wire drawing by means of a coupled damage model. J Mater Process Technol 183:210–218

    Article  Google Scholar 

  14. McAllen P, Phelan P (2005) A method for the prediction of ductile fracture by central bursts in axisymmetric extrusion. J Mech Eng Sci 219(C3):237–250

    Google Scholar 

  15. Kuboki T, Abe M, Neishi Y, Akiyama M (2005) Design method of die geometry and pass schedule by void index in multi-pass drawing. J Manuf Sci Eng 127:173–182. doi:10.1115/1.1830490

    Article  Google Scholar 

  16. Campos HB, Cetlin PR (1998) The influence of die semi-angle and of the coefficient of friction on the uniform tensile elongation of drawn copper bars. J Mater Process Technol 80–81:388–391

    Article  Google Scholar 

  17. Vallellano C, Cabanillas PA, Garcıa-Lomas FJ (2008) Analysis of deformations and stresses in flat rolling of wire. J Mater Process Technol 195:63–71

    Article  Google Scholar 

  18. Kazeminezhad M, Karimi Taheri A (2005) An experimental investigation on the deformation behavior during wire flat rolling process. J Mater Process Technol 160:313–320

    Article  Google Scholar 

  19. Kazeminezhad M, Karimi Taheri A (2005) A theoretical and experimental investigation on wire flat rolling process using deformation pattern. Mater Des 26:99–103

    Google Scholar 

  20. Utsunomiya H, Hartley P, Pillinger I (2001) Three-dimensional elastic-plastic finite-element analysis of the flattening of wire between plain rolls. J Manuf Sci Eng 123:397–404

    Article  Google Scholar 

  21. Kazeminezhad M, Karimi Taheri A, Kiet Tieu A (2008) A study on the cross-sectional profile of flat rolled wire. J Mater Process Technol 200:325–330

    Article  Google Scholar 

  22. Massé T (2010) Study and optimization of high carbon steel flat wires. PhD report, CEMEF, MinesParistech, Sophia-Antipolis, France

  23. Bobadilla C, Persem N, Foissey S (2007) Modelling of the drawing and rolling of high carbon flat wires. In AIP Conference 907:535–540

  24. Cherouat A, Saanouni K, Hammi Y (2003) Improvement of forging process of a 3D complex part woth respect to damage occurrence. J Mater Process Technol 142:307–317

    Article  Google Scholar 

  25. Teixeira P, Santos AD, Andrade Pires FM, César de Sá JMA (2006) Finite element prediction of ductile fracture in sheet metal forming processes. J Mater Process Technol 177:278–281

    Article  Google Scholar 

  26. Lemaître J (1984) How to use damage mechanics. Nucl Eng Des 80:233–245

    Article  Google Scholar 

  27. Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin

    Google Scholar 

  28. Kachanov LM (1958) On the time to rupture under creep conditions. Izv Acad Nauk SSSR, OTN 8:26–31

    Google Scholar 

  29. Lemaître J (1971) Evaluation of dissipation and damage in metals submitted to dynamic loading Proc. Int. conf. Materials, n°1, Kyoto, p 540

  30. Lemaître J, Chaboche JL (1978) Aspects Phénoménologiques de la Rupture Par Endommagement. J Mech Appl 2:317

    Google Scholar 

  31. Ladevèze P, Lemaitre J (1984) Damage effective stress in quasi-unilateral material conditions. In: Proc. of the 16th International Congress of Theoretical and Applied Mechanics. Lyngby, Denmark

  32. Bao Y, Wierzbicki T (2005) On the cut-off value of negative triaxiality for fracture. Eng Fract Mech 72:1049–1069

    Article  Google Scholar 

  33. Balan T (2005) Parameter identification of steel behaviour laws through the simulation of wire drawing. Proc. of the International Conference on Drawing, Zakopane. Poland

  34. Fereshteh-Saniee F, Pillinger I, Hartley P (2004) Friction modelling fort the physical simulation of the bulk metal forming processes. J Mater Process Technol 153–154:151–156

    Article  Google Scholar 

  35. Kubié J (1980) Le test de bipoinçonnement: étude théorique—application à l’étude du transfert de matière dans un contact frottant. PhD Thesis, Mines Paristech, in French

  36. De Vathaire M, Kubié J (1982) An evaluation of the plain strain compression test. Experimental study of the friction test. II. Role of transfer layers in boundary lubrication. J Lubr Technol 104:545–551

    Article  Google Scholar 

  37. Forestier R (2003) Développement d’une méthode d’identification de paramètres par analyse inverse couplée avec un modèle éléments finis. PhD report, CEMEF, MinesParistech, Sophia-Antipolis, France, in French

  38. Fayolle S (2008) Etude de la modélisation de la pose et de la tenue mécanique des assemblages par deformation plastique. Application au rivetage auto-poinçonneur. PhD report, CEMEF, MinesParistech, Sophia-Antipolis, France, in French

  39. Lemaître J (1985) A continuous damage mechanics model for ductile fracture. ASME J Eng Mater Technol 107:83–89

    Article  Google Scholar 

  40. Ben Tahar M (2005) Contribution à l’étude et la simulation du procédé d’hydroformage. PhD report, CEMEF, MinesParistech, Sophia-Antipolis, France, in French

  41. Boussetta R (2005) Estimateurs d’erreur et remaillage adaptatif: application à la simulation 3D des procédés de mise en forme des matériaux. PhD report, CEMEF, MinesParistech, Sophia-Antipolis, France, in French

  42. Kazeminezhad M, Karimi Taheri A (2006) Prediction of macroscopic shear bands in flat rolled wire using the finite and slab element method. Mater Lett 60:3265–3268

    Article  Google Scholar 

  43. Kazeminezhad M, Karimi Taheri A (2008) The effect of 3D and 2D deformations on flattened wires. J Mater Process Technol 202:553–558

    Article  Google Scholar 

  44. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98

    Article  Google Scholar 

  45. Massé T, Chastel Y, Montmitonnet P, Bobadilla C, Persem N, Foissey S (2011) Impact of mechanical anisotropy on the geometry of flat-rolled fully pearlitic steel wires. J Mater Process Technol 211:103–112

    Google Scholar 

  46. Ladevèze P (1983) On an anisotropic damage theory. In: Boehler JP (ed) Proc. CNRS Int. Coll. 351 Villars-de-Lans, Failure criteria of structured media, 1993, pp 355–363

  47. Gologanu M, Leblond JB, Devaux J (2001) Approximate models for ductile metals containing nonspherical voids—case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754

    Article  Google Scholar 

  48. Gologanu M, Leblond JB, Devaux J (1994) Approximate models for ductile metals containing nonspherical voids—case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Technol 116:290–297

    Article  Google Scholar 

  49. Gologanu M, Leblond JB, Perrin G, Devaux J (1995) Recent extensions of Gurson’s model for porous ductile metals. In: Suquet P (ed) Continuum micromechanics. Springer-Verlag, Berlin

    Google Scholar 

  50. Gologanu M, Leblond JB, Perrin G, Devaux J (2001) Theoretical models for void coalescence in porous ductile solids I. Coalescence “in layers”. Int J Solids Struct 38:5581–5594

    Article  MATH  Google Scholar 

  51. Croix P, Lauro F, Oudin J, Christlein J (2003) Improvement of damage prediction by anisotropy of microvoids. J Mater Process Technol 134–144:202–208

    Article  Google Scholar 

  52. Siruguet K, Leblond JB (2004) Effect of void locking by inclusions upon the plastic behavior of porous ductile solids—part I: theoretical modelling and numerical study of void growth. Int J Plast 20:225–268

    Article  MATH  Google Scholar 

  53. Comi C, Perego U (2001) Fracture energy based bi-dissipative damage model for concrete. Int J Solids Struct 38:6427–6454

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The Research Centre of ArcelorMittal Gandrange and ArcelorMittal Wire Solutions are both gratefully acknowledged, for financial support as well as for generous access to their production and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Massé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massé, T., Chastel, Y., Montmitonnet, P. et al. Mechanical and damage analysis along a flat-rolled wire cold forming schedule. Int J Mater Form 5, 129–146 (2012). https://doi.org/10.1007/s12289-011-1032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-011-1032-0

Keywords

Navigation