Skip to main content
Log in

Relationships between processing conditions and mechanical properties of PA12 tubes. The EWF approach

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In polyamide 12 (PA12) tube extrusion, calibration is the key step of the process that affects the subsequent mechanical properties. In previous work it has been shown that according to the calibration conditions, a very oriented skin layer may be created, which has been correlated to an important decrease of elongation at break. In this paper, we present new results showing a good correlation between molecular orientation and fracture toughness, as evaluated by the EWF (Essential Work of Fracture) approach. They concern notched specimens and confirm the results obtained in classical tensile testing. The specific essential work of fracture is very sensitive to the orientation generated in the skin region by appropriate processing conditions: it decreases from the external to the inner regions of the tube, and increases with skin orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mitsui Petrochemical Industries (1973) Method of and apparatus for treating the outer surface and inner surface of a pipe of a thermoplastic resinous material produced by extrusion. US Patent 4,159,889

  2. Dynamit Nobel AG (1975) Process and apparatus for the extrusion and calibration of an elongate synthetic thermoplastic plastics member having a chamber extending lengthwise thereof. GB Patent 1,529,370

  3. Gneuss, D (1982) Process for sizing pipes or tubes made of flexible plastics material and sizing device for carrying out the process. DE Patent 3,243,140

  4. Gas Injection Ltd. (1999) Extrusion sizing/calibration dies with gas pressure control. GB Patent 2,354,965

  5. Labaig JJ, Fenie M, Glotin M (1986) Extrusion Rilsan à grande vitesse. Technique ATO. Project report, Centre d’Etude de Recherche et Développement, Arkema, Serquigny, France

  6. Carin A, Haudin JM, Vincent M, Monasse B, Bellet G, Silagy D (2005) External calibration in PA12 tube extrusion. I. On-line draw ratio measurement and lubrication estimate for determination of tensile properties. Int Polym Process 20:296–304

    Google Scholar 

  7. Carin A, Haudin JM, Vincent M, Monasse B, Bellet G, Amouroux N (2005) External calibration in PA12 tube extrusion. II. Relations between molecular orientation, tensile properties and polymer drawing during calibration. Int Polym Process 20:305–311

    Google Scholar 

  8. Carin A, Haudin JM, Vincent M, Monasse B, Bellet G, Amouroux N (2006) External calibration in PA12 tube extrusion. Understand the influence of calibration on microstructure and surface state to improve mechanical properties. Int Polym Process 21:70–80

    Google Scholar 

  9. Haudin JM, Carin A, Parant O, Guyomard A, Vincent M, Peiti C, Montezin F (2008) A mechanical model for stress development in PA12 tube extrusion. Application to structure development. Int Polym Process 23:55–64

    Article  Google Scholar 

  10. Broberg KB (1968) Critical review of some theories in fracture mechanics. Int J Fract Mech 4:11–18

    Google Scholar 

  11. Cotterell B, Reddell JK (1977) The essential work of plane stress ductile fracture. Int J Fract 13:267–277

    Google Scholar 

  12. Mai YW, Cotterell B (1980) Effects of prestrain on plane stress ductile fracture in alpha-brass. J Mater Sci 15:2296–2306

    Article  Google Scholar 

  13. Cotterell B, Mai YW (1982) Plane stress ductile fracture. Advances in Fracture Research (Fracture 81, Cannes, France) 4:1683–1695

  14. Mai YW, Cotterell B (1986) On the essential work of ductile fracture in polymers. Int J Fract 32:105–125

    Article  Google Scholar 

  15. Mai YW, Cotterell B, Horlyck R, Vigna G (1987) The essential work of plane stress ductile fracture of linear polyethylenes. Polym Eng Sci 27:804–809

    Article  Google Scholar 

  16. Chan WYF, Williams JG (1994) Determination of the fracture toughness of polymeric films by the essential work method. Polymer 35:1666–1672

    Article  Google Scholar 

  17. Karger-Kocsis J (1996) How does “phase transformation toughening” work in semicrystalline polymers? Polym Eng Sci 36:203–210

    Article  Google Scholar 

  18. Ferrer-Balas D, Maspoch ML, Martinez AB, Santana OO (1999) On the essential work of fracture method: energy partitioning of the fracture process in iPP films. Polym Bull 42:101–108

    Article  Google Scholar 

  19. Yamakawa RS, Razzino CA, Correa CA, Hage E Jr (2004) Influence of notching and molding conditions on determination of EWF parameters in polyamide 6. Polym Test 23:195–202

    Article  Google Scholar 

  20. Hashemi S (1993) Ductile fracture of polyester films. Plast Rubber Compos Process Appl 20:229–237

    Google Scholar 

  21. Karger-Kocsis J, Czigany T (1996) On the essential and non-essential work of fracture of biaxial-oriented filled PET film. Polymer 37:2433–2438

    Article  Google Scholar 

  22. Karger-Kocsis J, Czigany T, Moskala EJ (1997) Thickness dependence of work of fracture parameters of an amorphous copolyester. Polymer 38:4587–4593

    Article  Google Scholar 

  23. Karger-Kocsis J, Czigany T, Moskala EJ (1998) Deformation rate dependence of the essential and non-essential work of fracture parameters in an amorphous copolyester. Polymer 39:3939–3944

    Article  Google Scholar 

  24. Meyer JP (1999) Etude expérimentale du renforcement du polyéthylène téréphtalate par des élastomères coeur-coquille : relations microstructure résistance au choc. PhD thesis, Ecole Nationale Supérieure des Mines de Paris

  25. Maspoch ML, Henault V, Ferrer-Balas D, Velasco JI, Santana OO (2000) Essential work of fracture on PET films: influence of the thickness and the orientation. Polym Test 19:559–568

    Article  Google Scholar 

  26. Karger-Kocsis J, Moskala EJ, Shang PP (2001) Work of fracture and strain-induced cold crystallization behaviour of amorphous copolyester sheets. J Therm Anal Calorim 63:671–678

    Article  Google Scholar 

  27. Barany T, Karger-Kocsis J, Czigany T (2003) Effect of hygrothermal aging on the essential work of fracture response of amorphous poly(ethylene terephthalate) sheets. Polym Degrad Stab 82:271–278

    Article  Google Scholar 

  28. Chen H, Karger-Kocsis J, Wu J (2004) Effects of molecular structure on the essential work of fracture of amorphous copolyesters at various deformation rates. Polymer 45:6375–6382

    Article  Google Scholar 

  29. Barany T, Földes E, Czigany T (2007) Effect of thermal and hygrothermal aging on the plane stress fracture thoughness of poly(ethylene terephthalate) sheets. Express Polymer Lett 1:180–187

    Article  Google Scholar 

  30. Karger-Kocsis J, Moskala EJ (2000) Molecular dependence of the essential and non-essential work of fracture of amorphous films of poly(ethylene-2, 6-naphthalate) (PEN). Polymer 41:6301–6310

    Article  Google Scholar 

  31. Arkhireyeva A, Hashemi S (2002) Fracture behaviour of polyethylene naphthalate (PEN). Polymer 43:289–300

    Article  Google Scholar 

  32. Paton C, Hashemi S (1992) Plane-stress essential work of ductile fracture for polycarbonate. J Mater Sci 27:2279–2290

    Article  Google Scholar 

  33. Carin A (2005) Etude expérimentale et modélisation thermomécanique de l’étape de calibration dans le procédé d’extrusion de tubes en polyamide 12. PhD Thesis, Ecole des Mines de Paris

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Haudin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haudin, JM., Carin, A., Vincent, M. et al. Relationships between processing conditions and mechanical properties of PA12 tubes. The EWF approach. Int J Mater Form 3, 225–231 (2010). https://doi.org/10.1007/s12289-009-0673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-009-0673-8

Keywords

Navigation