Skip to main content
Log in

Thickness and strain rate at the sheet dome apex in superplastic bulge forming tests

  • Material behaviour and formability: F. Barlat, D. Banabic, O.Cazacu, T. Kuwabara, L. Delannay
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This paper discusses evaluating and controlling sheet dome apex thickness during constant pressure superplastic bulging tests. An accurate thickness value, associated with the H-t curve (normalized polar height–forming time curve), helps determine the equivalent strain rate at the sheet dome apex. The numerical results were confirmed in experimental bulging tests carried out on a tin-lead alloy sheet which is superplastic at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C.H. Hamilton, A.K. Ghosh, Superplastic sheet forming, in: Metals Handbook, (1988).

  2. J. Pilling, N. Ridley, Superplasticity in crystalline solids, The Institute of Metals, London, (1989).

    Google Scholar 

  3. J. Bonet, A. Gil, R.D. Wood, R. Said, R.V. Curtis, Simulating superplastic forming, Computer Methods in Applied Mechanics and Engineering 195 (48-49) (2006) 6580-6603.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Chandra, Constitutive behaviour of superplastic materials, International Journal of Non-Linear Mechanics 37 (2002) 461–484.

    Article  MATH  Google Scholar 

  5. G. Giuliano, S. Franchitti, On the evaluation of superplastic characteristics using the finite element method, International Journal of Machine Tools & Manufacture 47 (2007) 471–476.

    Article  Google Scholar 

  6. C. Bruni, L. Carrino, S. Franchitti, F. Gabrielli, G. Giuliano, G. Palumbo, D. Sorgente, L. Tricarico, Modelling the superplastic behaviour of an AZ31 magnesium alloy sheet, in: Proceedings of the 8th AITEM Conference Enhancing the Science ofManufacturing, Montecatini Terme, Italy, September 10–12, (2007).

  7. J. Lin, Selection of material models for predicting necking in superplastic forming, International Journal of Plasticity 19 (2003) 469-481.

    Article  MATH  Google Scholar 

  8. G. Giuliano, Constitutive equation for superplastic Ti-6Al-4V alloy, Materials and Design 29 (2008) 1330-1333.

    Article  Google Scholar 

  9. A.K. Ghosh, C.H. Hamilton, Influences of material parameters and microstructure on superplatic forming, Metallurgical Transactions, 13A (1982) 733-743.

    Google Scholar 

  10. L. Carrino, G. Giuliano, C. Palmieri, Analysis of superplastic bulge testing by using constant pressure, in: Proceedings of IInd International Conference on Advances in Production Engineering, Warsaw, Poland, June 7–9, (2001).

  11. MARC Analysis Research Corporation, User Information, Rev.K.6, (1996).

  12. L. Carrino, G. Giuliano, Finite element modelling and the experimental verification of superplastic forming, Advanced Performance Materials 6 (2) (1999) 159–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Giuliano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliano, G. Thickness and strain rate at the sheet dome apex in superplastic bulge forming tests. Int J Mater Form 2 (Suppl 1), 375 (2009). https://doi.org/10.1007/s12289-009-0456-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12289-009-0456-2

Keywords

Navigation