Skip to main content

Advertisement

Log in

Intracellular Signaling Pathways Involved in Childhood Acute Lymphoblastic Leukemia; Molecular Targets

  • Review Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by an uncontrolled proliferation of immature lymphoid cells. ALL is the most common hematologic malignancy in early childhood, and it reaches peak incidence between the ages of 2 and 3 years. The prognosis of ALL is associated with aberrant gene expression, in addition to the presence of numerical or structural chromosomal alterations, age, race, and immunophenotype. The Relapse rate with regard to pharmacological treatment rises in childhood; thus, the expression of biomarkers associated with the activation of cell signaling pathways is crucial to establish the disease prognosis. Intracellular pathways involved in ALL are diverse, including Janus kinase/Signal transducers and transcription activators (JAK-STAT), Phosphoinositide-3-kinase–protein kinase B (PI3K-AKT), Ras mitogen-activated protein kinase (Ras-MAPK), Glycogen synthase kinase-3β (GSK-3β), Nuclear factor-kappa beta (NF-κB), and Hypoxia-inducible transcription factor 1α (HIF-1α), among others. In this review, we present several therapeutic targets, intracellular pathways, and molecular markers that are being studied extensively at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silverman LB (2014) Balancing cure and long-term risks in acute lymphoblastic leukemia. Hematology 25(1):190–197

    Article  Google Scholar 

  2. Campbell K, Gerscher S, Siclair L (2001) Childhood acute lymphoblastic leukaemia. Leukaemia Research Fund 8(1):1–10

    Google Scholar 

  3. Pacheco C, Lucchini G, Valsecchi MG, Malta A, Conter V, Flores A et al (2014) Childhood acute lymphoblastic leukemia in Nicaragua: long-term results in the context of an international cooperative program. Pediatr Blood Cancer 61(5):827–832

    Article  CAS  PubMed  Google Scholar 

  4. Smith M, Arthur D, Camitta B, Carroll AJ, Crist W, Gaynon P et al (1996) Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 14(1):18–24

    CAS  PubMed  Google Scholar 

  5. Harrison CJ (2013) Targeting signaling pathways in acute lymphoblastic leukemia: new insights. ASH Educ Book 1:118–125

    Google Scholar 

  6. Friedmann AM, Weinstein HJ (2000) The role of prognostic features in the treatment of childhood acute lymphoblastic leukemia. Oncologist 5:321–328

    Article  CAS  PubMed  Google Scholar 

  7. Winter SS (2011) Pediatric acute leukemia therapies informed by molecular analysis of high-risk disease. Hematology/the Education Program of the American Society of Hematology. American Society of Hematology Education Program, pp 366–73

  8. Protocolo de la atención para leucemia linfoblástica. guía clínica y esquema de tratamiento. Instituto nacional de salud pública, validado por el consejo de salubridad general, los institutos nacionales de salud y la comisión nacional de protección social en salud. Seguro Popular 1(1):1–20

  9. Wheeler KA, Richards SM, Bailey CC, Gibson B, Hann IM, Hill FG et al (2000) Bone marrow transplantation versus chemotherapy in the treatment of very high-risk childhood acute lymphoblastic leukemia in first remission: results from Medical Research Council UK ALL X and XI. Blood 96:2412–2451

    CAS  PubMed  Google Scholar 

  10. Waber DP, Carpentieri SC, Klar N, Silverman LB, Schwenn M, Hurwitz CA et al (2000) Cognitive sequelae in children treated for acute lymphoblastic leukemia with dexamethasone or prednisone. J Pediatr Hematol Oncol 22:206–213

    Article  CAS  PubMed  Google Scholar 

  11. Cao Y, Lupo PJ, Swartz MD, Nousome D, Scheurer ME (2013) Using a bayesian hierarchical model for identifying single nucleotide polymorphisms associated with childhood acute lymphoblastic leukemia risk in case-parent triads. PLoS One 8(12):1–5

    CAS  Google Scholar 

  12. Aziz SA, Sharma SK, Sabah I, Jan MA (2015) Prognostic significance of cell surface phenotype in acute lymphoblastic leukemia. South Asian J Cancer 4(2):91–94

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al (2004) Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104:3679–3687

    Article  CAS  PubMed  Google Scholar 

  14. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL et al (2008) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 111:5477–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roganovic J, Guenova M, Fuchs O, Abdul G, Schuurhuis GJ, Zeijlemaker W et.al. Leukemia, 1ra Ed. ISBN 978-953-51-1127-6

  16. Linka Y, Ginzel S, Krüger M, Novosel A, Gombert M, Kremmer E et al. (2013) The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods. Blood Cancer J 11(3):151

    Article  Google Scholar 

  17. Wang J, Mi JQ, Debernardi A, Vitte AL, Emadali A, Meyer JA et.al. (2015) A six gene expression signature defines aggressive subtypes and predicts outcome in childhood and adult acute lymphoblastic leukemia. Oncotarget 6(18):16527–16542

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al (2008) Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322:1377–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cario G, Zimmermann M, Romey R, Gesk S, Vater I, Harbott J et al (2010) Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115:5393–5397

    Article  CAS  PubMed  Google Scholar 

  20. Bercovich D, Ganmore I, Scott LM, Wainreb G, Birger Y, Elimelech A et al (2008) Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet 372:1484–1492

    Article  CAS  PubMed  Google Scholar 

  21. Ward A, Touw I, Yoshimura A (2000) The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 95:19–29

    CAS  PubMed  Google Scholar 

  22. Mullighan C, Zhang J, Harvey R, Collins-Underwood J, Schulman B, Phillips L et al (2009) JAK mutations in highrisk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 9(106):9414–9418

    Article  Google Scholar 

  23. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD et al (1998) Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-in- duced biologic responses. Cell 93:373–383

    Article  CAS  PubMed  Google Scholar 

  24. Darnell JE, Kerr IM, Stark GR (1994) Jak-STAT path- ways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  CAS  PubMed  Google Scholar 

  25. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O (1995) Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol 13:369–398

    Article  CAS  PubMed  Google Scholar 

  26. O’Shea JJ, Leonard WJ (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270:797–800

    Article  PubMed  Google Scholar 

  27. Lo MC, Peterson LF, Yan M, Cong X, Hickman JH, Dekelver RC et al (2013) JAK inhibitors suppress t(8;21) fusion protein-induced leukemia. Leukemia 27:2272–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mullighan C (2012) The molecular genetic makeup of acute lymphoblastic leukemia, 1st edn. ASH Educ Book 1:389–396

  29. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S et al (1998) Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385–395

    Article  CAS  PubMed  Google Scholar 

  30. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K (1998) Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93:397–409

    Article  CAS  PubMed  Google Scholar 

  31. Silvennoinen O, Witthuhn B, Quelle FW, Cleveland JL, Yi T, Ihle JN (1993) Structure of the JAK2 protein tyrosine kinase and its role in IL-3 signal transduction. Proc Natl Acad Sci 90:8429–8433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeh TC, Pellegrini S (1999) The Janus kinase family of protein tyrosine kinases and their role in signaling. Cell Mol Life Sci 55:1523–1534

    Article  CAS  PubMed  Google Scholar 

  33. Constantinescu SN, Ghaffari S, Lodish HF (1999) The erythropoietin receptor: structure, activation, and intracellular signal transduction. Trends Endocrinol 10:18–23

    Article  CAS  Google Scholar 

  34. Verstovsek S, Passamonti F, Rambaldi A, Barosi G, Rosen PJ, Rumi E et al (2013) A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer 120:513–520

    Article  Google Scholar 

  35. Patterer V, Schnittger S, Kern W, Haferlach T, Haferlach C (2013) Hematologic malignancies with PCM1-JAK2 gene fusion share characteristics with myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, and FGFR1. Ann Hematol 92:759–769

    Article  CAS  PubMed  Google Scholar 

  36. Yu V, Pistillo J, Archibeque I, Han Lee J, Sun BC, Schenkel LB et al (2013) Differential selectivity of JAK2 inhibitors in enzymatic and cellular settings. Exp Hematol 41:491–500

    Article  CAS  PubMed  Google Scholar 

  37. Ghaffari S, Kitidis C, Fleming M, Neubauer H, Pfeffer K, Lodish H (2001) Erythropoiesis in the absence of januskinase 2: BCR-ABL induces red cell formation in JAK2−/− hematopoietic progenitors. Blood 98:2948–2957

    Article  CAS  PubMed  Google Scholar 

  38. Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP et al (1995) Defectivelymphoid development in mice lacking Jak3. Science 270:800–802

    Article  CAS  PubMed  Google Scholar 

  39. Grossman WJ, Verbsky JW, Yang L, Berg LJ, Fields LE, Chaplin DD et al (1999) Dysregulated myelopoiesis in mice lacking Jak3. Blood 94:932–939

    CAS  PubMed  Google Scholar 

  40. Warsi J, Hosseinzadeh Z, Dong L, Pakladok T, Umbach A, Bhavsar S et al (2013) Effect of Janus kinase 3 on the peptide transporters PEPT1 and PEPT2. J Membr Biol 246:885–892

    Article  CAS  PubMed  Google Scholar 

  41. Ross JA, Spadaro M, Rosado DC, Cavallo F, Kirken RA, Pericle F (2013) Inhibition of JAK3 with a novel, selective and orally active small molecule induces therapeutic response in T-cell malignancies. Leukemia 28(4):941–944

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M et al (2011) Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 43:932–939

    Article  CAS  PubMed  Google Scholar 

  43. Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T (2012) BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 120:2843–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pardanani A, Finke C, Lasho TL, Al-Kali A, Begna KH, Hanson C et al (2012) IPSS-independent prognostic value of plasma CXCL10, IL-7 and IL-6 levels in myelodysplastic síndromes. Leukemia 26:693–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR (2010) Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood 116:4251–4261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanda T, Tyner JW, Gutierrez A, Ngo VN, Glover J, Chang BH et al (2013) TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov 3:564–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kirito K, Nakajima K, Watanabe T, Uchida M, Tanaka M, Ozawa K et al (2002) Identification of the human erythropoietin receptor region required for Stat1 and Stat3 activation. Blood 99:102–110

    Article  CAS  PubMed  Google Scholar 

  48. Walker S, Frank DA (2012) Screening approaches to generating STAT inhibitors: allowing the hits to identify the targets. JAK-STAT 1(4):292–299

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nelson EA, Walker SR, Weisberg E, Bar-Natan M, Barrett R, Gashin LB et al (2011) The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 117:3421–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Coppo P, Flamant S, De Mas V, Jarrier P, Guillier M, Bonnet ML et al (2006) BCR–ABL activates STAT3 via JAK and MEK pathways in human cells. Br J Haematol 134:171–179

    Article  CAS  PubMed  Google Scholar 

  51. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S (1996) Essential role of Stat6 in IL-4 signalling. Nature 380:627–630

    Article  CAS  PubMed  Google Scholar 

  52. Kindler T, Cornejo M, Scholl C, Liu J, Leeman D, Haydu J et al (2008) K-RasG12D–induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to γ-secretase inhibitors. Blood 112:3373–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee-Sherick AB, Linger RM, Gore L, Keating AK, Graham DK (2010) Targeting paediatric acute lymphoblastic leukaemia: novel therapies currently in development. Br J Haematol 151:295–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19:6680–6686

    Article  CAS  PubMed  Google Scholar 

  55. Avellino R, Romano S, Parasole R, Bisogni R, Lamberti A, Poggi V et al (2005) Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood 106:1400–1406

    Article  CAS  PubMed  Google Scholar 

  56. Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Regnier A et al (2005) Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J 390:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Badura S, Tesanovic T, Pfeifer H, Wystub S, Nijmeijer B, Liebermann M et.al. (2013) Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PLoS One 8(11):e80070

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu Y, Gu X, Li R, Luo Q, Xu Y (2010) Glycogen synthase kinase-3 beta inhibition induces nuclear factor-kappaBmediated apoptosis in pediatric acute lymphocyte leukemia cells. J Exp Clin Cancer Res 29:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ding VW, Chen RH, McCormick F (2000) Differential regulation of glycogen synthase kinase 3beta by insulin and Wnt signaling. J Biol Chem 275:32475–32481

    Article  CAS  PubMed  Google Scholar 

  60. Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO (2011) Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc Natl Acad Sci USA 108:1204–1213

    Article  Google Scholar 

  61. Dann SG, Selvaraj A, Thomas G (2007) mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13:252–259

    Article  CAS  PubMed  Google Scholar 

  62. Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, Gandin V et al (2010) S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 18:763–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39:171–183

    Article  PubMed  PubMed Central  Google Scholar 

  64. Flügel D (2012) Görlach, Kietzmann T. GSK-3β regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1. Blood 119:1292–1301

    Article  PubMed  PubMed Central  Google Scholar 

  65. Torrano V, Procter J, Cardus P, Greaves M, Ford A (2011) ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood 118:4910–4918

    Article  CAS  PubMed  Google Scholar 

  66. Dowdyb C, Frederickb D, Zaidia S, Colbyb J, Liana J, Van Wijnenc J et al (2013) A germline point mutation in Runx1 uncouples its role in definitive hematopoiesis from differentiation. Exp Hematol 41:980–991

    Article  Google Scholar 

  67. Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, Nishimoto N et al (2013) Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest 123(9):3876–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Christopher B et al (2009) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360:470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Starkova J, Zamostna B, Mejstrikova E, Krejci R, Drabkin HA, Trka J (2010) HOX gene expression in phenotypic and genotypic subgroups and low HOXA gene expression as an adverse prognostic factor in pediatric ALL. Pediatr Blood Cancer 55:1072–1082

    Article  PubMed  Google Scholar 

  70. Beachy SH, Onozawa M, Silverman D, Chung YJ, Rivera MM, Aplan PD (2013) Isolated Hoxa9 overexpression predisposes to the development of lymphoid but not myeloid leukemia. Exp Hematol 41:518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al (2002) Gene expression signatures define novel onco- genic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1:75–87

    Article  CAS  PubMed  Google Scholar 

  72. De Keersmaecker K, Marynen P, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 90:1116–1127

    PubMed  Google Scholar 

  73. Homminga I, Vuerhard MJ, Langerak AW, Buijs-Gladdines J, Pieters R, Meijerink JP (2012) Characterization of a pediatric T-cell acute lymphoblastic leukemia patient with simultaneous LYL1 and LMO2 rearrangements. Haematologica 97:258–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tatarek J, Cullion K, Ashworth T, Gerstein R, Aster JC, Kelliher MA (2011) Notch1 inhibition targets the leukemia initiating cells in a Tal1/Lmo2 mouse model of T-ALL. Blood 118(6):1579–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kusy S, Gerby B, Goardon N, Gault N, Ferri F, Gérard D et al (2010) NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia. J Exp Med 207:2141–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wadman I, Li J, Bash RO, Forster A, Osada H, Rabbitts TH et al (1994) Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 13:4831–4839

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Baer R (1993) TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Semin Cancer Biol 4:341–347

    CAS  PubMed  Google Scholar 

  78. Martin GS (2001) The hunting of the Src. Nat Rev Mol Cell Biol 2:467–475

    Article  CAS  PubMed  Google Scholar 

  79. Venkitachalam S, Chueh FY, Yu CL (2012) Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene. Biochem Biophys Res Commun 417:1058–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miyamoto A, Cui X, Naumovski L, Cleary ML (1996) Helix-loop-helix proteins LYL1 and E2a form heterodimeric complexes with distinctive DNA-binding properties in hematolymphoid cells. Mol Cell Biol 16(5):2394–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pui CH, Carroll WL, Meshinchi S, Arceci RJ (2011) Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 29:551–565

    Article  PubMed  PubMed Central  Google Scholar 

  82. Armstrong SA, Look AT (2005) Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23:6306–6315

    Article  CAS  PubMed  Google Scholar 

  83. García JL, Hernández JM, Gutiérrez NC, Flores T, González D, Calasanz MJ et al (2003) Abnormalities on 1q and 7q are associated with poor outcome in sporadic Burkitt’s lymphoma. A cytogenetic and comparative genomic hybridization study. Leukemia 17:2016–2024

    Article  PubMed  Google Scholar 

  84. Zunino A, Viaggi S, Ottaggio L, Fronza G, Schenone A, Roncella S et al (2000) Chromosomal aberrations evaluated by CGH, FISH and GTG-banding in a case of AIDS-related Burkitt’s lymphoma. Haematologica 85:250–255

    CAS  PubMed  Google Scholar 

  85. Zimonjic DB, Keck-Waggoner C, Popescu NC (2001) Novel genomic imbalances and chromosome translocations involving c-myc gene in Burkitt’s lymphoma. Leukemia 15:1582–1588

    Article  CAS  PubMed  Google Scholar 

  86. Salaverria I, Zettl A, Beà S, Hartmann EM, Dave SS, Wright GW et al (2008) Chromosomal alterations detected by comparative genomic hybridization in subgroups of gene expression-defined Burkitt’s lymphoma. Haematologica 93:1327–1334

    Article  PubMed  Google Scholar 

  87. Barth TF, Müller S, Pawlita M, Siebert R, Rother JU, Mechtersheimer G et al (2004) Homogeneous immunophenotype and paucity of secondary genomic aberrations are distinctive features of endemic but not of sporadic Burkitt’s lymphoma and diffuse large B-cell lymphoma with MYC rearrangement. J Pathol 203:940–945

    Article  CAS  PubMed  Google Scholar 

  88. Toujani S, Dessen P, Ithzar N, Danglot G, Richon C, Vassetzky Y et al (2009) High resolution genome-wide analysis of chromosomal alterations in Burkitt’s lymphoma. PLoS One 4:7089

    Article  Google Scholar 

  89. Hawley RG, Fong AZ, Reis MD, Zhang N, Lu M, Hawley TS (1997) Transforming function of the HOX11/TCL3 homeobox gene. Cancer Res 57:337–345

    CAS  PubMed  Google Scholar 

  90. Keller G, Wall C, Fong AZ, Hawley TS, Hawley RG (1998) Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood 92:877–887

    CAS  PubMed  Google Scholar 

  91. De Keersmaecker K, Marynen P, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 90:1116–1127

    PubMed  Google Scholar 

  92. Uckun FM, Myers DE, Qazi S, Ozer Z, Rose R, D’Cruz OJ et al (2015) Recombinant human CD19L-sTRAIL effectively targets B cell precursor acute lymphoblastic leukemia. J Clin Investig 125(3):1006–1018

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hasan M, Queudeville M, Trentin L, Mirjam S, Bronzini I, Palmi C et al (2014) Targeting of hyperactivated mTOR signaling in high-risk acute lymphoblastic leukemia in a pre-clinical model. Oncotarget 6(3):1382–1395

    Article  PubMed Central  Google Scholar 

  94. Beagle BR, Nguyen DM, Mallya S, Tang SS, Lu M, Zeng Z et al (2015) mTOR kinase inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells. Oncotarget 6(4):2088–2100

    Article  PubMed  PubMed Central  Google Scholar 

  95. Evangelisti C, Evangelisti C, Teti G, Chiarini F, Falconi M, Melchionda F et al (2014) Assessment of the effect of sphingosine kinase inhibitors on apoptosis, unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget 5(17):7886–7901

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ntziachristos P, Tsirigos A, Welstead G, Trimarchi T, Bakogianni S, Xu L et al (2014) Contrasting roles for histone 3 lysine 27 demethylases in acute lymphoblastic leukemia. Nature 514(7523):513–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hu Z, Slayton WB (2014) Integrin VLA-5 and FAK are good targets to improve treatment response in the philadelphia chromosome positive acute lymphoblastic leukemia. Front Oncol 4:112

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Fabián Layton Tovar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Layton Tovar, C.F., Mendieta Zerón, H. Intracellular Signaling Pathways Involved in Childhood Acute Lymphoblastic Leukemia; Molecular Targets. Indian J Hematol Blood Transfus 32, 141–153 (2016). https://doi.org/10.1007/s12288-015-0609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-015-0609-z

Keywords

Navigation