Skip to main content
Log in

Virtuelle Planung komplexer mikrovaskulärer knöcherner Rekonstruktionen in der MKG-Chirurgie

Virtual planning of complex osseous microvascular reconstructions in oral and maxillofacial surgery

  • Leitthema
  • Published:
Der MKG-Chirurg Aims and scope

Zusammenfassung

Das Gesicht gilt mit seiner Vielzahl an unterschiedlichen Funktionen als einer der komplexesten Teile des menschlichen Körpers. Erhebliche knöcherne Defekte in der Mund‑, Kiefer- und Gesichtsregion werden häufig durch onkologische Resektionen oder Traumata verursacht. Aufgrund der Ausdehnung sind diese meistens nicht mehr suffizient durch lokale Lappenplastiken, sondern nur durch mikrochirurgische Transplantate zu therapieren. In der Regel werden dazu Beckenkamm‑, Fibula- und Scapulatransplantate verwendet. Die virtuelle Planung der Rekonstruktion erfolgt auf Basis importierter dreidimensionaler Bilddaten des Defekts und der Spenderregion im DICOM-Format. Anschließend besteht die Möglichkeit, die virtuelle Planung durch den Clinical Engineer in einem Webmeeting durchführen zu lassen oder bei entsprechender technischer und personeller Ausstattung die virtuelle Planung am eigenen Computer durchzuführen. In einem weiteren Schritt werden Operationsschablonen und ggf. auch individuelle Osteosyntheseplatten hergestellt. Auch wenn die virtuelle Planung zeit- und personalintensiv ist, kann durch ihre Verwendung die Genauigkeit der Rekonstruktion erhöht und die Ischämiezeit des Transplantats gesenkt werden.

Abstract

With its variety of different functions, the face is considered as one of the most complex parts of the human body. Significant bony defects in the maxillofacial region are often caused by oncological resections or trauma. Due to their extension, adequate treatment is usually not possible using local flaps, and microsurgical transplants are necessary. Generally, deep circumflex iliac artery (DCIA), fibula and scapula transplants are used. Virtual planning of the reconstruction is achieved by importing three-dimensional image data of the defect and donor regions in DICOM-format. Hereafter it is possible to have the virtual planning carried out by a clinical engineer in a web-meeting or, if appropriate technical and personnel requirements are available, the virtual planning can be performed on an in-house computer. In a further step, surgical templates and optionally customized osteosynthesis plates are produced. Even if the virtual planning process is costly in terms of time and personnel, it can increase the accuracy of the reconstruction and reduce the ischemic time of the flap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Ayoub N, Ghassemi A, Rana M et al (2014) Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial. Trials 15:114

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bakamjian V, Littlewood M (1964) Cervical Skin Flaps for Intraoral and Pharyngeal Repair Following Cancer Surgery. Br J Plast Surg 17:191–210

    Article  CAS  PubMed  Google Scholar 

  3. Baker SR, Sullivan MJ (1988) Osteocutaneous free scapular flap for one-stage mandibular reconstruction. Archives of Otolaryngology–Head & Neck. Surgery 114:267–277

    CAS  Google Scholar 

  4. Bardenheuer F (1892) Verhandlung der Deutsch Gesellschaft Zentralbibliothek. Chirurgie 21:68

    Google Scholar 

  5. Borah GL, Rankin MK (2010) Appearance is a function of the face. Plast Reconstr Surg 125:873–878

    Article  CAS  PubMed  Google Scholar 

  6. Carrel A, Morel (1902) Anastomose bout à bout de la jugulaire et la carotide interne. Lyon Med 99:114–116

    Google Scholar 

  7. Cheng B (1983) Free forearm flap transplantation in repair and reconstruction of tongue defects. Zhonghua Kou Qiang Ke Za Zhi 18:39–41

    CAS  PubMed  Google Scholar 

  8. Coleman JJ 3rd, Sultan MR (1991) The bipedicled osteocutaneous scapula flap: a new subscapular system free flap. Plast Reconstr Surg 87:682–692

    Article  Google Scholar 

  9. Coleman SC, Burkey BB, Day TA et al (2000) Increasing use of the scapula osteocutaneous free flap. Laryngoscope 110:1419–1424

    Article  CAS  PubMed  Google Scholar 

  10. Cordeiro PG, Disa JJ, Hidalgo DA et al (1999) Reconstruction of the mandible with osseous free flaps: a 10-year experience with 150 consecutive patients. Plast Reconstr Surg 104:1314–1320

    Article  CAS  PubMed  Google Scholar 

  11. Cornelius CP, Giessler GA, Wilde F et al (2016) Iterations of computer- and template assisted mandibular or maxillary reconstruction with free flaps containing the lateral scapular border – Evolution of a biplanar plug-on cutting guide. J Craniomaxillofac Surg 44:229–241

    Article  PubMed  Google Scholar 

  12. Curtis DA, Plesh O, Miller AJ et al (1997) A comparison of masticatory function in patients with or without reconstruction of the mandible. Head Neck 19:287–296

    Article  CAS  PubMed  Google Scholar 

  13. Disa JJ, Cordeiro PG (2000) Mandible reconstruction with microvascular surgery. Semin Surg Oncol 19:226–234

    Article  CAS  PubMed  Google Scholar 

  14. Dos Santos L (1980) The scapular flap: a new microsurgical free flap. Bol Chir Plast 70:133

    Google Scholar 

  15. Flemming A, Brough M, Evans N et al (1990) Mandibular reconstruction using vascularised fibula. Br J Plast Surg 43:403–409

    Article  CAS  PubMed  Google Scholar 

  16. Foley BD, Thayer WP, Honeybrook A et al (2013) Mandibular reconstruction using computer-aided design and computer-aided manufacturing: an analysis of surgical results. J Oral Maxillofac Surg 71:e111–e119

    Article  PubMed  Google Scholar 

  17. Ghassemi A, Ghassemi M, Riediger D et al (2009) Comparison of donor-site engraftment after harvesting vascularized and nonvascularized iliac bone grafts. J Oral Maxillofac Surg 67:1589–1594

    Article  PubMed  Google Scholar 

  18. Gilbert A (1981) Free vascularized bone grafts. Int Surg 66:27–31

    CAS  PubMed  Google Scholar 

  19. Grohmann I, Raith S, Mucke T et al (2015) Biomechanical loading test on reconstructed mandibles with fibular, iliac crest or scapula graft: a comparative study. Br J Oral Maxillofac Surg 53:741–747

    Article  PubMed  Google Scholar 

  20. Hidalgo DA (1989) Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg 84:71–79

    Article  CAS  PubMed  Google Scholar 

  21. Holzle F, Kesting MR, Holzle G et al (2007) Clinical outcome and patient satisfaction after mandibular reconstruction with free fibula flaps. Int J Oral Maxillofac Surg 36:802–806

    Article  CAS  PubMed  Google Scholar 

  22. Holzle F, Watola A, Kesting MR et al (2007) Atrophy of free fibular grafts after mandibular reconstruction. Plast Reconstr Surg 119:151–156

    Article  PubMed  Google Scholar 

  23. Holzle F, Wolff KD, Mohr C (2008) Reconstructive oral and maxillofacial surgery. Dtsch Arztebl Int 105:815–822

    PubMed  PubMed Central  Google Scholar 

  24. Holzle F, Ristow O, Rau A et al (2011) Evaluation of the vessels of the lower leg before microsurgical fibular transfer. Part II: magnetic resonance angiography for standard preoperative assessment. Br J Oral Maxillofac Surg 49(4):275–280

    Article  PubMed  Google Scholar 

  25. Jones NF, Swartz WM, Mears DC et al (1988) The “double barrel” free vascularized fibular bone graft. Plast Reconstr Surg 81:378–385

    Article  CAS  PubMed  Google Scholar 

  26. Kärcher H (1986) Die Unterkieferrekonstruktion mit freien mikrovaskulären Knochentransplantaten. Acta Chir Austriaca 33:251

    Google Scholar 

  27. Maurer P, Pistner H, Schubert J (2006) Computer assisted chewing power in patients with segmental resection of the mandible. Mund Kiefer Gesichtschir 10:37–41

    Article  CAS  PubMed  Google Scholar 

  28. Mcgregor IA (1963) The Temporal Flap in Intra-Oral Cancer: Its Use in Repairing the Post-Excisional Defect. Br J Plast Surg 16:318–335

    Article  CAS  PubMed  Google Scholar 

  29. Mitchell DA (2014) An introduction to oral and maxillofacial surgery, 2nd Ed. CRC Press, Boca Raton

    Google Scholar 

  30. Modabber A, Gerressen M, Stiller MB et al (2012) Computer-assisted mandibular reconstruction with vascularized iliac crest bone graft. Aesthetic Plast Surg 36:653–659

    Article  PubMed  Google Scholar 

  31. Modabber A, Legros C, Rana M et al (2012) Evaluation of computer-assisted jaw reconstruction with free vascularized fibular flap compared to conventional surgery: a clinical pilot study. Int J Med Robotics Comput Assist Surg 8(2):215–220

    Article  Google Scholar 

  32. Modabber A, Gerressen M, Ayoub N et al (2013) Computer-assisted zygoma reconstruction with vascularized iliac crest bone graft. Int J Med Robotics Comput Assist Surg 9(4):497–502

    Article  Google Scholar 

  33. Modabber A, Ayoub N, Möhlhenrich SC et al (2014) The accuracy of computer-assisted primary mandibular reconstruction with vascularized bone flaps: iliac crest bone flap versus osteomyocutaneous fibula flap. Med Devices (Auckl) 7:211–217

    Google Scholar 

  34. Modabber A, Möhlhenrich SC, Ayoub N et al (2015) Computer-aided mandibular reconstruction with vascularized iliac crest bone flap and simultaneous implant surgery. J Oral Implantol 41:e189–e194

    Article  PubMed  Google Scholar 

  35. Olsson P, Nysjo F, Rodriguez-Lorenzo A et al (2015) Haptics-assisted Virtual Planning of Bone, Soft Tissue, and Vessels in Fibula Osteocutaneous Free Flaps. Plast Reconstr Surg Glob Open 3(8):e479

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paleologos TS, Wadley JP, Kitchen ND et al (2000) Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery. Neurosurgery 47:40–47 (discussion 47–48)

    CAS  PubMed  Google Scholar 

  37. Pietsch AP, Raith S, Ode JE et al (2016) Biomechanical competence of six different bone screws for reconstructive surgery in three different transplants: Fibular, iliac crest, scapular and artificial bone. J Craniomaxillofac Surg 44:689–696

    Article  PubMed  Google Scholar 

  38. Riediger D (1988) Restoration of masticatory function by microsurgically revascularized iliac crest bone grafts using enosseous implants. Plast Reconstr Surg 81:861–877

    Article  CAS  PubMed  Google Scholar 

  39. Sanders R, Mayou BJ (1979) A new vascularized bone graft transferred by microvascular anastomosis as a free flap. Br J Surg 66:787–788

    Article  CAS  PubMed  Google Scholar 

  40. Schepers RH, Raghoebar GM, Vissink A et al (2013) Fully 3‑dimensional digitally planned reconstruction of a mandible with a free vascularized fibula and immediate placement of an implant-supported prosthetic construction. Head Neck 35:E109–E114

    Article  PubMed  Google Scholar 

  41. Schepers RH, Raghoebar GM, Vissink A et al (2015) Accuracy of fibula reconstruction using patient-specific CAD/CAM reconstruction plates and dental implants: A new modality for functional reconstruction of mandibular defects. J Craniomaxillofac Surg 43:649–657

    Article  PubMed  Google Scholar 

  42. Schneider D, Marquardt P, Zwahlen M et al (2009) A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clin Oral Implants Res 20(Suppl 4):73–86

    Article  PubMed  Google Scholar 

  43. Schramm A, Wilde F (2011) Computer-assisted reconstruction of the facial skeleton. HNO 59:800–806

    Article  CAS  PubMed  Google Scholar 

  44. Snyder CC, Bateman JM, Davis CW et al (1970) Mandibulo-facial restoration with live osteocutaneous flaps. Plast Reconstr Surg 45:14–19

    Article  CAS  PubMed  Google Scholar 

  45. Steel BJ, Cope MR (2015) A brief history of vascularized free flaps in the oral and maxillofacial region. J Oral Maxillofac Surg 73(786):e781–711

    Google Scholar 

  46. Taylor GI, Watson N (1978) One-stage repair of compound leg defects with free, revascularized flaps of groin skin and iliac bone. Plast Reconstr Surg 61:494–506

    Article  CAS  PubMed  Google Scholar 

  47. Taylor GI, Miller GD, Ham FJ (1975) The free vascularized bone graft: a clinical extension of microvascular techniques. Plast Reconstr Surg 55:533–544

    Article  CAS  PubMed  Google Scholar 

  48. Ueba Y, Fujikawa S (1983) Nine years’ follow-up of a free vascularized fibular graft in neurofibromatosis: a case report and literature review. Jpn J Orthop Trauma Surg 26:595–600

    Google Scholar 

  49. Urken ML, Vickery C, Weinberg H et al (1989) The internal oblique-iliac crest osseomyocutaneous microvascular free flap in head and neck reconstruction. J Reconstr Microsurg 5:203–214 (discussion 215–206)

    Article  CAS  PubMed  Google Scholar 

  50. Urken ML, Vickery C, Weinberg H et al (1989) The internal oblique-iliac crest osseomyocutaneous free flap in oromandibular reconstruction. Report of 20 cases. Arch Otolaryngol Head Neck Surg 115:339–349

    Article  CAS  PubMed  Google Scholar 

  51. Wei F‑C, Chen H‑C, Chuang C‑C et al (1986) Fibular osteoseptocutaneous flap: anatomic study and clinical application. Plast Reconstr Surg 78:191–199

    Article  CAS  PubMed  Google Scholar 

  52. Wei F‑C, Seah C‑S, Tsai Y‑C et al (1994) Fibula osteoseptocutaneous flap for reconstruction of composite mandibular defects. Plast Reconstr Surg 93:294–304

    Article  CAS  PubMed  Google Scholar 

  53. Weitz J, Bauer FJ, Hapfelmeier A et al (2016) Accuracy of mandibular reconstruction by three-dimensional guided vascularised fibular free flap after segmental mandibulectomy. Br J Oral Maxillofac Surg 54:506–510

    Article  CAS  PubMed  Google Scholar 

  54. Wolff K‑D, Hölzle F (2011) Raising of microvascular flaps: a systematic approach. Springer, Berlin

    Book  Google Scholar 

  55. Wolff K‑D, Ervens J, Herzog K et al (1996) Experience with the osteocutaneous fibula flap: an analysis of 24 consecutive reconstructions of composite mandibular defects. J Cranio-Maxillofacial Surg 24:330–338

    Article  CAS  Google Scholar 

  56. Xia JJ, Phillips CV, Gateno J et al (2006) Cost-effectiveness analysis for computer-aided surgical simulation in complex cranio-maxillofacial surgery. J Oral Maxillofac Surg 64:1780–1784

    Article  PubMed  Google Scholar 

  57. Zweifel DF, Simon C, Hoarau R et al (2015) Are virtual planning and guided surgery for head and neck reconstruction economically viable? J Oral Maxillofac Surg 73:170–175

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Modabber MBA, FEBOMFS.

Ethics declarations

Interessenkonflikt

A. Modabber, F. Peters, S. Raith, N. Ayoub und F. Hölzle geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben.

Additional information

Redaktion

S. Haßfeld, Dortmund

K. Dawirs, Essen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modabber, A., Peters, F., Raith, S. et al. Virtuelle Planung komplexer mikrovaskulärer knöcherner Rekonstruktionen in der MKG-Chirurgie. MKG-Chirurg 10, 272–283 (2017). https://doi.org/10.1007/s12285-017-0120-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12285-017-0120-7

Schlüsselwörter

Keywords

Navigation