Skip to main content
Log in

Knochenersatzmaterialien

Aktueller Stand und ein Ausblick in die Zukunft

Bone substitute materials

Current state and a glimpse into the future

  • CME Zertifizierte Fortbildung
  • Published:
Der MKG-Chirurg Aims and scope

Zusammenfassung

In der augmentativen zahnärztlichen Chirurgie, Implantologie und Parodontologie nehmen Knochenersatzmaterialien (KEM) einen hohen Stellenwert ein, da sie eine attraktive Alternative zum körpereigenen (autologen) Knochen darstellen und in mancher Hinsicht sogar dem körpereigenen Knochen überlegen sein können. In Abhängigkeit von unterschiedlichen Indikationen zur Knochenaugmentation stellen neben der ausschließlichen Nutzung des autologen Knochens auch die Kombination von autologem Knochen mit KEM sowie die alleinige Nutzung von KEM etablierte evidenzbasierte Verfahren dar. Unter dem Überbegriff KEM werden auch humane allogene Materialien mit entsprechend guter Biokompatibilität, allerdings mit dem theoretischen Restrisiko einer HIV-, HCV- und Prionentransmission, subsumiert. Im Kopf-Hals-Bereich hat sich das Feld der KEM als Alternative zum autologen Knochen mit ihren verschiedenen Vorzügen so umfangreich etabliert, dass der Überblick über die kommerziell verfügbaren KEM schnell verloren geht. In diesem CME-Beitrag werden die wichtigsten KEM-Gruppen mit ihren jeweiligen Vor- und Nachteilen erläutert und hierzu passende, etablierte Produkte vorgestellt. Gleichzeitig werden die Anforderungen an moderne KEM beschrieben, ohne deren Wissen der sinnvolle Einsatz als Füllstoff bzw. Gerüstmaterial für die Knochenheilung nicht gelingen kann. Abschließend gibt der Artikel einen Ausblick auf zukünftige Entwicklungen und Lösungsansätze der derzeit noch typischen KEM-Problemfelder.

Abstract

Nowadays, bone substitute materials (BSM) play a central role in dental surgery, implantology and periodontology. Depending on the different indications for bone augmentation, the use of autologous bone alone, BSMs as well as the combination of both are evidence-based procedures. In the context of BSMs, human allogenic materials, while being biocompatible, still pose a theoretically minimal risk of HIV, HCV or prion transmission. The use of BSMs in the head and neck region as an alternative to autologous bone has now become so well established that an overview of all commercially available products can be very easily lost. In this continuing medical education article the main classes of BSMs with the individual advantages and disadvantages are presented and the corresponding established products are discussed. Furthermore, the requirements of modern BSMs which are essential for sound bone healing are presented. Finally, this article gives an outlook on future developments of BSMs and presents some solutions for typical still existing problems of currently available BSMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Barth H (1895) Histologische Untersuchungen über Knochen-Transplantation. Beitr Pathol Anat Allg Pathol 17:65–142

    Google Scholar 

  2. Hollinger JO, Brekke J, Gruskin E et al (1996) Role of bone substitutes. Clin Orthop Relat Res 324:55–65

    Article  PubMed  Google Scholar 

  3. Kolk A, Handschel J, Drescher W et al (2012) Current trends and future perspectives of bone substitute materials – from space holders to innovative biomaterials. J Craniomaxillofac Surg 40:706–718

    Article  PubMed  Google Scholar 

  4. Eggli PS, Mueller W, Schenk RK (1987) The role of pore size on bone in growth and implant substitution in hydroxylapatit and tricalcium phosphat ceramics. A histologic and morphometric study in rabbits. In: Pizzoferrato A, Marchetti PG, Ravaglioli A, Lee AJC (eds) Biomaterials and clinical applications. Elsevier, Amsterdam, pp 53–56

  5. Cornell CN (1999) Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am 30:591–598

    Article  CAS  PubMed  Google Scholar 

  6. Rupprecht S, Petrovic L, Burchhardt B et al (2007) Antibiotic-containing collagen for the treatment of bone defects. J Biomed Mater Res B Appl Biomater 83:314–319

    Article  PubMed  Google Scholar 

  7. Maus U, Andereya S, Ohnsorge JA et al (2008) A bFGF/TCP-composite inhibits bone formation in a sheep model. J Biomed Mater Res B Appl Biomater 85:87–92

    Article  PubMed  Google Scholar 

  8. Horch HH, Sader R, Pautke C et al (2006) Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg 35:708–713

    Article  PubMed  Google Scholar 

  9. Smeets R, Maciejewski O, Gerressen M et al (2009) Impact of rhBMP-2 on regeneration of buccal alveolar defects during the osseointegration of transgingival inserted implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e3–e12

    Article  PubMed  Google Scholar 

  10. Ayoub MA, El-Rosasy MA (2013) Hybrid grafting of post-traumatic bone defects using β-tricalcium phosphate and demineralized bone matrix. Eur J Orthop Surg Traumatol (Epub ahead of print)

  11. Park JJ, Hershman SH, Kim YH (2013) Updates in the use of bone grafts in the lumbar spine. Bull Hosp Jt Dis 71:39–48

    Google Scholar 

  12. Laurencin CT, El-Amin SF (2008) Xenotransplantation in orthopaedic surgery. J Am Acad Orthop Surg 16:4–8

    PubMed  Google Scholar 

  13. Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31(Suppl 4):37–47

    Article  PubMed  Google Scholar 

  14. Martin C, Winet H, Bao JY (1996) Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials 17:2373–2380

    Article  CAS  PubMed  Google Scholar 

  15. Springer IN, Terheyden H, Geiss S et al (2004) Particulated bone grafts – effectiveness of bone cell supply. Clin Oral Implants Res 15:205–212

    Article  PubMed  Google Scholar 

  16. Rosenberg ES, Fox GK, Cohen C (2000) Bioactive glass granules for regeneration of human periodontal defects. J Esthet Dent 12:248–257

    Article  CAS  PubMed  Google Scholar 

  17. Schliephake H, Zghoul N, Jager V et al (2009) Bone formation in trabecular bone cell seeded scaffolds used for reconstruction of the rat mandible. Int J Oral Maxillofac Surg 38:166–172

    Article  CAS  PubMed  Google Scholar 

  18. Takagi S, Chow LC, Markovic M et al (2001) Morphological and phase characterizations of retrieved calcium phosphate cement implants. J Biomed Mater Res 58:36–41

    Article  CAS  PubMed  Google Scholar 

  19. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

    Article  CAS  PubMed  Google Scholar 

  20. Rokkanen PU (1991) Absorbable materials in orthopaedic surgery. Ann Med 23:109–115

    Article  CAS  PubMed  Google Scholar 

  21. Nasr HF, Aichelmann-Reidy ME, Yukna RA (1999) Bone and bone substitutes. Periodontol 2000 19:74–86

    Article  CAS  PubMed  Google Scholar 

  22. Scislowska-Czarnecka A, Menaszek E, Szaraniec B et al (2012) Ceramic modifications of porous titanium: effects on macrophage activation. Tissue Cell 44:391–400

    Article  CAS  PubMed  Google Scholar 

  23. Wiltfang J, Merten HA, Schlegel KA et al (2002) Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res 63:115–121

    Article  CAS  PubMed  Google Scholar 

  24. Gan JC, Ducheyne P, Vresilovic E et al (2000) Bioactive glass serves as a substrate for maintenance of phenotype of nucleus pulposus cells of the intervertebral disc. J Biomed Mater Res 51:596–604

    Article  CAS  PubMed  Google Scholar 

  25. Hofmann GO (1992) Biodegradable implants in orthopaedic surgery – a review on the state-of-the-art. Clin Mater 10:75–80

    Article  CAS  PubMed  Google Scholar 

  26. Petrovic L, Schlegel AK, Schultze-Mosgau S et al (2006) Different substitute biomaterials as potential scaffolds in tissue engineering. Int J Oral Maxillofac Implants 21:225–231

    PubMed  Google Scholar 

  27. Hing KA, Annaz B, Saeed S et al (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16:467–475

    Article  CAS  PubMed  Google Scholar 

  28. Schneider M, Loukota R, Reitemeier B et al (2009) Bone block fixation by ultrasound activated resorbable pin osteosynthesis: a biomechanical in vitro analysis of stability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:79–85

    Article  PubMed  Google Scholar 

  29. Bostman OM, Pihlajamaki HK (2000) Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthop Relat Res 371:216–227

    Article  PubMed  Google Scholar 

  30. Holzle F, Bauer F, Kesting MR et al (2011) Single-stage implantation in the atrophic alveolar ridge of the mandible with the Norian skeletal repair system. Br J Oral Maxillofac Surg 49:542–545

    Article  PubMed  Google Scholar 

  31. Gosain AK, Riordan PA, Song L et al (2005) A 1-year study of hydroxyapatite-derived biomaterials in an adult sheep model: III. Comparison with autogenous bone graft for facial augmentation. Plast Reconstr Surg 116:1044–1052

    Article  CAS  PubMed  Google Scholar 

  32. Bashara H, Wohlfahrt JC, Polyzois I et al (2012) The effect of permanent grafting materials on the preservation of the buccal bone plate after tooth extraction: an experimental study in the dog. Clin Oral Implants Res 23:911–917

    Article  PubMed  Google Scholar 

  33. Gholami GA, Tehranchi M, Kadkhodazadeh M et al (2010) Evaluation of bone substitutes in experimental defects. Res J Biol Sci 5:465–469

    Article  Google Scholar 

  34. Cipitria A, Reichert JC, Epari DR et al (2013) Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials 34:9960–9968

    Article  CAS  PubMed  Google Scholar 

  35. Mai R, Reinstorf A, Pilling E et al (2008) Histologic study of incorporation and resorption of a bone cement-collagen composite: an in vivo study in the minipig. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:e9–e14

    Article  PubMed  Google Scholar 

  36. Ren J, Blackwood KA, Doustgani A et al (2013) Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. J Biomed Mater Res A (Epub ahead of print)

  37. Abshagen K, Schrodi I, Gerber T et al (2009) In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone. J Biomed Mater Res A 91:557–566

    Article  CAS  PubMed  Google Scholar 

  38. Fischer J, Kolk A, Wolfart S et al (2011) Future of local bone regeneration – protein versus gene therapy. J Craniomaxillofac Surg 39:54–64

    Article  CAS  PubMed  Google Scholar 

  39. Kolk A, Haczek C, Koch C et al (2011) A strategy to establish a gene-activated matrix on titanium using gene vectors protected in a polylactide coating. Biomaterials 32:6850–6859

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Smeets gibt an, drittmittelgeförderte Forschungsprojekte mit den Firmen BEGO Implant Systems GmbH & Co. KG, CAMLOG Vertriebs GmbH, botiss dental GmbH und Heraeus Kulzer GmbH durchgeführt zu haben oder noch aktuell zu bearbeiten. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Smeets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smeets, R., Hanken, H., Jung, O. et al. Knochenersatzmaterialien. MKG-Chirurg 7, 53–67 (2014). https://doi.org/10.1007/s12285-013-0394-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12285-013-0394-3

Schlüsselwörter

Keywords

Navigation