Skip to main content

Advertisement

Log in

PET/CT supports breast cancer diagnosis and treatment

  • Special Feature
  • New trends in breast diagnostic imaging
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

The application of positron emission tomography with 18F fluoro-2-deoxy-d-glucose (FDG-PET) has remarkably improved the management of cancer patients. However, some caution is necessary in the interpretation of FDG-PET images. Because of its low spatial resolution, it is difficult to identify the anatomical location of radiotracer uptake and to distinguish between normal physiological accumulation and pathological uptake. A novel combined PET/CT system has been developed that improves the capacity to correctly localize and interpret FDG uptake. Although only a few studies have been conducted on the potential role of PET/CT in the management of breast cancer patients, the advantage of this modality compared with PET alone should be relevant for application in the field of breast cancer. In this review, we describe the clinical impact of PET/CT on breast cancer diagnosis compared with PET alone with respect to disease restaging, treatment monitoring, preoperative staging and primary diagnosis. In addition, the possible role of PET/CT with iodine contrast is noted for evaluation of intra-ductal spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wahl R, Cody R, Hutchins G, Mudgett E. Positron emission tomography scanning of primary and metastatic breast cancer with radiolabeled glucose analogue 2-deoxy-2 (18F) fluoro-Dglucose. N Engl J Med. 1991;324:200.

    PubMed  CAS  Google Scholar 

  2. Flanagan FL, Dehdashti F, Siegel BA. PET in breast cancer. Semin Nucl Med. 1998;28:290–302.

    Article  PubMed  CAS  Google Scholar 

  3. Avril N, Schelling M, Dose J, Weber WA, Schwaiger M. Utility of PET in breast cancer. Clin Positron Imaging. 1999;2:261–71.

    Article  PubMed  Google Scholar 

  4. Bombardieri E, Grippa F. PET imaging in breast cancer. Q J Nucl Med. 2001;45:245–56.

    PubMed  CAS  Google Scholar 

  5. Czernin J. FDG PET in breast cancer: a different view of its clinical use. Mol Imaging Biol. 2002;4:35–45.

    Article  PubMed  Google Scholar 

  6. Heinisch M, Gallowitsch HJ, Mikosch P, Kresnik E, Kumnig G, Gomez I, et al. Comparison of FDG PET and dynamic contrast enhanced MRI in the evaluation of suggestive breast lesions. Breast. 2003;12:17–22.

    Article  PubMed  CAS  Google Scholar 

  7. Townsend DW, Carney JP, Yap JT, Hall NC. PET/CT today and tomorrow. J Nucl Med. 2004;45 (Suppl 1):4S–14S.

    PubMed  Google Scholar 

  8. Shimoda W, Hayashi M, Murakami K, Oyama T, Sunagawa M. The relationship between FDG uptake in PET scans and biological behavior in breast cancer. Breast Cancer. 2007;14:260–8.

    Article  PubMed  Google Scholar 

  9. Kinahan PE, Hasegawa BH, Beyer T. X-ray based attenuation correction for PET/CT scanners. Semin Nucl Med.2003;33:166–79.

    Article  PubMed  Google Scholar 

  10. Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.

    PubMed  Google Scholar 

  11. von Schulthess GK. Cost considerations regarding an integrated CT-PET system. Eur Radiol. 2000;10(Suppl 3):S377–80.

    Article  Google Scholar 

  12. Holm S, Toft P, Jensen M. Estimation of the noise contributions from blank, transmission and emission scans in PET. IEEE Trans Nucl Sci. 1996;43:2285–91.

    Article  Google Scholar 

  13. Beyer T, Kinahan PE, Townsend DW. Optimization of emission and transmission scan duration in 3D whole-body PET. IEEE Trans Nucl Sci. 1997;44:2400–7.

    Article  Google Scholar 

  14. Heinisch M, Gallowitsch HJ, Mikosch P, Kresnik E, Kumnig G, Gomez I, et al. Comparison of FDG-PET and dynamic contrast-enhanced MRI in the evaluation of suggestive breast lesions. Breast. 2003;12:17–22.

    Article  PubMed  CAS  Google Scholar 

  15. Schirrmeister H, Kühn T, Guhlmann A, Santjohanser C, Hörster T, Nüssle K, et al. Fluorine-18 2-deoxy-2-fluoro-d-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med. 2001;28:351–8.

    Article  PubMed  CAS  Google Scholar 

  16. Avril N, Rose CA, Schelling M, Dose J, Kuhn W, Bense S, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol. 2000;18:3495–3502.

    PubMed  CAS  Google Scholar 

  17. Palmedo H, Bender H, Grünwald F, Mallmann P, Zamora P, Krebs D, et al. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and technetium-99m methoxyisobutylisonitrile scintimammography in the detection of breast tumors. Eur J Nucl Med. 1997;24:1138–45.

    PubMed  CAS  Google Scholar 

  18. Avril N, Dose J, Janicke DF, Bense S, Ziegler S, Laubenbacher C, et al. Metabolic characterization of breast tumors with positron emission tomography using 18F fluorodeoxyglucose. J Clin Oncol. 1996;14:1848–57.

    PubMed  CAS  Google Scholar 

  19. Scheidhauer K, Scharl A, Pietrzyk U, Wagner R, Gohring U, Schomacker K, et al. Qualitative 18F-FDG PET in primary breast cancer: clinical relevance and practicability. Eur J Nucl Med. 1996;23:618–23.

    Article  PubMed  CAS  Google Scholar 

  20. Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, et al. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med. 1995;36:1766–74.

    PubMed  CAS  Google Scholar 

  21. Adler LP, Crowe JP,al-Kaisi NK, Sunshine JL. Evaluation of breast masses and axillary lymph nodes with (18F) 2-deoxy-2-fluoro-d-glucose PET. Radiology. 1993;187:743–50.

    PubMed  CAS  Google Scholar 

  22. Nitzsche EU, Hoh CK, Dalbohm NM, Glaspy JA, Phelps ME, Moser EA, et al. Whole body positron emission tomography in breast cancer. Rofo. 1993;158:293–8.

    PubMed  CAS  Google Scholar 

  23. Noh DY, Yun IJ, Kim JS, Kang HS, Lee DS, Chung JK, et al. Diagnostic value of positron emission tomography in primary breast cancer. World J Surg. 1998;23:223–8.

    Article  Google Scholar 

  24. Tamaki Y, Akashi-Tanaka S, Ishida T, Uematsu T, Sawai Y, Kusama M, et al. 3D imaging of intraductal spread of breast cancer and its clinical application for navigation surgery. Breast Cancer. 2002;9:289–95.

    Article  PubMed  Google Scholar 

  25. Avril N, Dose J, Janicke F, Ziegler S, Romer W, Weber W, et al. Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)fluoro-2-deoxy-d-glucose. J Natl Cancer Inst. 1996;88:1204–9.

    Article  PubMed  CAS  Google Scholar 

  26. Crippa F, Agrest R, Seregni E, Greco M, Pascali C, Bogni A, et al. Prospective evaluation of fluorine-18-FDG PET in presurgical staging of the axilla in breast cancer. J Nucl Med. 1998;39:4–8.

    PubMed  CAS  Google Scholar 

  27. Early Breast Cancer Trials’ Collaborative Group (EBCTCG). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials. Lancet. 2005;366:2087–106.

    Google Scholar 

  28. Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelpes ME, Hoh CK. Accuracy of whole body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med. 1998;39:431–5.

    PubMed  CAS  Google Scholar 

  29. Cook GJ, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer. 2000;88:2927–33.

    Article  PubMed  CAS  Google Scholar 

  30. Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, et al. Positron emission tomography using [18F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol. 2000;18:1676–88.

    PubMed  CAS  Google Scholar 

  31. Schelling M, Avril N, Nähring J, Kuhn W, Römer W, Sattler D, et al. Positron emission tomography using [18F]-fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol. 2000;18:1689–95.

    PubMed  CAS  Google Scholar 

  32. Schwarz JD, Bader M, Jenicke L, Hemminger G, Jänicke F, Avril N. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med. 2005;46:1144–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Hayashi.

About this article

Cite this article

Hayashi, M., Murakami, K., Oyama, T. et al. PET/CT supports breast cancer diagnosis and treatment. Breast Cancer 15, 224–230 (2008). https://doi.org/10.1007/s12282-008-0051-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-008-0051-2

Keywords

Navigation