Skip to main content

Advertisement

Log in

Understanding Vulvovaginal Candidiasis Through a Community Genomics Approach

  • Translational Research (R Wheeler, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Vulvovaginal candidiasis (VVC), predominantly caused by Candida albicans, is one of the most common types of infectious vaginitis. Extensive study has been directed toward understanding host defenses against this infection, and results remain inconclusive. While many have examined the role of innate and cell-mediated immunity, as well as Candida-specific antibodies and the anti-Candida activity of vaginal epithelial cells, little attention has been given to one of the most important players: the vaginal microbiota. Exploring changes in species composition and gene expression within the vaginal community using high-throughput genomic technologies is invaluable to fully understanding Candida pathogenesis and host response to infection. This integrative perspective of pathogenesis, host response and microbial influence are critical to our ability to improve routine gynecologic care and treatment of vaginal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sobel JD, Faro S, Force RW, Foxman B, Ledger WJ, et al. Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations. YMOB. 1998;178:203–11.

    CAS  Google Scholar 

  2. Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369:1961–71.

    Article  PubMed  Google Scholar 

  3. Geiger AM, Foxman B, Sobel JD. Chronic vulvovaginal candidiasis: characteristics of women with Candida albicans, C glabrata and no candida. Genitourin Med. 1995;71:304–7.

    PubMed  CAS  Google Scholar 

  4. Nyirjesy P. Chronic vulvovaginal candidiasis. Am Fam Physician. 2001;63:697–702.

    PubMed  CAS  Google Scholar 

  5. Anderson MR, Klink K, Cohrssen A. Evaluation of vaginal complaints. JAMA. 2004;291:1368–79.

    Article  PubMed  CAS  Google Scholar 

  6. Workowski KA, Berman SM. Sexually transmitted diseases treatment guidelines, 2010; 2010.

  7. Sobel JD. Epidemiology and pathogenesis of recurrent vulvovaginal candidiasis. YMOB. 1985;152:924–35.

    CAS  Google Scholar 

  8. Sobel JD. Vaginitis. N Engl J Med. 1997;337:1896–903.

    Article  PubMed  CAS  Google Scholar 

  9. de Leon EM, Jacober SJ, Sobel JD, Foxman B. Prevalence and risk factors for vaginal Candida colonization in women with type 1 and type 2 diabetes. BMC Infect Dis. 2002;2:1.

    Article  PubMed  Google Scholar 

  10. Sobel JD. Pathogenesis of recurrent vulvovaginal Candidiasis. Curr Infect Dis Rep. 2002;4:514–9.

    Article  PubMed  Google Scholar 

  11. Hetticarachchi N, Ashbee HR, Wilson JD. Prevalence and management of non-albicans vaginal candidiasis. Sex Transm Infect. 2010;86:99–100.

    Article  PubMed  Google Scholar 

  12. • Babic M, Hukic M. Candida albicans and non-albicans species as etiological agent of vaginitis in pregnant and non-pregnant women. Bosnian J Basic Med Sci. 2010;10(1):89–97. This article examines the contribution of non-­–albicans species of Candida to the burden of vaginal candidiasis.

    Google Scholar 

  13. Zeng J, Zong L-L, Mao T, Huang Y-X, Xu Z-M. Distribution of Candida albican genotype and Candida species is associated with the severity of vulvovagianl candidiasis. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:1649–53.

    PubMed  Google Scholar 

  14. Zhu W, Filler SG. Interactions of Candida albicans with epithelial cells. Cell Microbiol. 2010;12:273–82.

    Article  PubMed  CAS  Google Scholar 

  15. Romani L, Bistoni F, Puccetti P. Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Curr Opin Microbiol. 2003;6:338–43.

    Article  PubMed  Google Scholar 

  16. Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J. Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci USA. 2000;97:6102–7.

    Article  PubMed  CAS  Google Scholar 

  17. Filler SG, Sheppard DC. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog. 2006;2:e129.

    Article  PubMed  Google Scholar 

  18. Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–28.

    Article  PubMed  CAS  Google Scholar 

  19. Ray TL, Payne CD. Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect Immun. 1988;56:1942–9.

    PubMed  CAS  Google Scholar 

  20. Park H, Myers CL, Sheppard DC, Phan QT, Sanchez AA, et al. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol. 2005;7:499–510.

    Article  PubMed  CAS  Google Scholar 

  21. Eversole LR, Reichart PA, Ficarra G. Oral keratinocyte immune responses in HIV-associated candidiasis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84(4):372–80.

    Article  PubMed  CAS  Google Scholar 

  22. Farah CS, Ashman RB, Challacombe SJ. Oral candidosis. Clin Dermatol. 2000;18:553–62.

    Article  PubMed  CAS  Google Scholar 

  23. Lian CH, Liu WD. Differential expression of Candida albicans secreted aspartyl proteinase in human vulvovaginal candidiasis. Mycoses. 2007;50:383–90.

    Article  PubMed  CAS  Google Scholar 

  24. Taylor BN, Staib P, Binder A, Biesemeier A, Sehnal M, et al. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect Immun. 2005;73:1828–35.

    Article  PubMed  CAS  Google Scholar 

  25. Paiva LCF, Vidigal PG, Donatti L, Svidzinski TIE, Consolaro MEL. Assessment of in vitro biofilm formation by Candida species isolates from vulvovaginal candidiasis and ultrastructural characteristics. Micron. 2012;43:497–502.

    Article  PubMed  Google Scholar 

  26. Harriott MM, Lilly EA, Rodriguez TE, Fidel PL, Noverr MC. Candida albicans forms biofilms on the vaginal mucosa. Microbiology (Reading, Engl). 2010;156:3635–44.

    Article  CAS  Google Scholar 

  27. Cheng S, Clancy CJ, Checkley MA, Zhang Z, Wozniak KL, et al. The role of Candida albicans NOT5 in virulence depends upon diverse host factors in vivo. Infect Immun. 2005;73:7190–7.

    Article  PubMed  CAS  Google Scholar 

  28. De Bernardis F, Mühlschlegel FA, Cassone A. The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun. 1998;66(7):3317–25.

    PubMed  Google Scholar 

  29. Fidel PL. History and update on host defense against vaginal Candidiasis. Am J Reprod Immunol. 2007;57:2–12.

    Article  PubMed  Google Scholar 

  30. Leigh JE, Barousse M, Swoboda RK, Myers T, Hager S, et al. Candida-specific systemic cell-mediated immune reactivities in human immunodeficiency virus-positive persons with mucosal candidiasis. J Infect Dis. 2001;183:277–85.

    Article  PubMed  CAS  Google Scholar 

  31. Schuman P, Sobel JD, Ohmit SE, Mayer KH, Carpenter CC, et al. Mucosal candidal colonization and candidiasis in women with or at risk for human immunodeficiency virus infection. HIV Epidemiology Research Study (HERS) Group. Clin Infect Dis. 1998;27:1161–7.

    Article  PubMed  CAS  Google Scholar 

  32. Steele C, Ozenci H, Luo W, Scott M, Fidel PL. Growth inhibition of Candida albicans by vaginal cells from naïve mice. Med Mycol. 1999;37:251–9.

    PubMed  CAS  Google Scholar 

  33. Nomanbhoy F, Steele C, Yano J, Fidel PL. Vaginal and oral epithelial cell anti-Candida activity. Infect Immun. 2002;70:7081–8.

    Article  PubMed  CAS  Google Scholar 

  34. Barousse MM, Steele C, Dunlap K, Espinosa T, Boikov D, et al. Growth inhibition of Candida albicans by human vaginal epithelial cells. J Infect Dis. 2001;184:1489–93.

    Article  PubMed  CAS  Google Scholar 

  35. • Yano J, Noverr MC, Fidel PL. Cytokines in the host response to Candida vaginitis: Identifying a role for non-­–classical immune mediators, S100 alarmins. Cytokine. 2012;58:118–28. This article discusses the innate immune response to Candida.

    Article  PubMed  CAS  Google Scholar 

  36. Chaim W, Foxman B, Sobel JD. Association of recurrent vaginal candidiasis and secretory ABO and Lewis phenotype. J Infect Dis. 1997;176:828–30.

    Article  PubMed  CAS  Google Scholar 

  37. Babula O, Lazdane G, Kroica J, Ledger WJ, Witkin SS. Relation between recurrent vulvovaginal candidiasis, vaginal concentrations of mannose-binding lectin, and a mannose-binding lectin gene polymorphism in Latvian women. Clin Infect Dis. 2003;37:733–7.

    Article  PubMed  Google Scholar 

  38. Fidel PL, Barousse M, Espinosa T, Ficarra M, Sturtevant J, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun. 2004;72:2939–46.

    Article  PubMed  Google Scholar 

  39. Fidel Jr P. Immunity in vaginal candidiasis. Curr Opin Infect Dis. 2005;18(2):107–11.

    Article  PubMed  Google Scholar 

  40. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, et al. The human microbiome project. Nature. 2007;449:804–10.

    Article  PubMed  CAS  Google Scholar 

  41. NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.

    Article  PubMed  Google Scholar 

  42. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18.

    Article  PubMed  CAS  Google Scholar 

  43. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  PubMed  CAS  Google Scholar 

  44. Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature. 2007;449:811–8.

    Article  PubMed  CAS  Google Scholar 

  45. •• Ma B, Forney LJ, Ravel J. Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol. 2012;66:371–89. This review provides an evidence-­based argument for studying both the composition and function of the vaginal ecosystem as a means for understanding vaginal health and disease.

    Article  PubMed  CAS  Google Scholar 

  46. Sobel J. Is there a protective role for vaginal flora? Curr Infect Dis Rep. 1999;1:379–83.

    Article  PubMed  Google Scholar 

  47. Donders GGG, Bosmans E, Dekeersmaecker A, Vereecken A, Van Bulck B, et al. Pathogenesis of abnormal vaginal bacterial flora. Am J Obstet Gynecol. 2000;182:872–8.

    Article  PubMed  CAS  Google Scholar 

  48. Pybus V, Onderdonk AB. Microbial interactions in the vaginal ecosystem, with emphasis on the pathogenesis of bacterial vaginosis. Microbes Infect. 1999;1:285–92.

    Article  PubMed  CAS  Google Scholar 

  49. Lai SK, Hida K, Shukair S, Wang Y-Y, Figueiredo A, et al. Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus. J Virol. 2009;83:11196–200.

    Article  PubMed  CAS  Google Scholar 

  50. Gupta K, Stapleton AE, Hooton TM, Roberts PL, Fennell CL, et al. Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J Infect Dis. 1998;178:446–50.

    Article  PubMed  CAS  Google Scholar 

  51. Taha TE, Hoover DR, Dallabetta GA, Kumwenda NI, Mtimavalye LA, et al. Bacterial vaginosis and disturbances of vaginal flora: association with increased acquisition of HIV. AIDS. 1998;12:1699–706.

    Article  PubMed  CAS  Google Scholar 

  52. Gray RH, Wawer MJ, Sewankambo N, Serwadda D. HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet. 1997;350(9093):1780.

    Google Scholar 

  53. van De Wijgert JH, Mason PR, Gwanzura L, Mbizvo MT, Chirenje ZM, et al. Intravaginal practices, vaginal flora disturbances, and acquisition of sexually transmitted diseases in Zimbabwean women. J Infect Dis. 2000;181:587–94.

    Article  Google Scholar 

  54. Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL. Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis. 2003;36:663–8.

    Article  PubMed  Google Scholar 

  55. Boskey ER, Cone RA, Whaley KJ, Moench TR. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001.

  56. Tomás M, Ocaña VS, Wiese B. Growth and lactic acid production by vaginal Lactobacillus acidophilus CRL 1259, and inhibition of uropathogenic Escherichia coli. J Med Microbiol. 2003;52(Pt 12):1117–24.

    Article  Google Scholar 

  57. Antonio MA, Hawes SE, Hillier SL. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis. 1999;180:1950–6.

    Article  PubMed  CAS  Google Scholar 

  58. Kaewsrichan J, Peeyananjarassri K, Kongprasertkit J. Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol Med Microbiol. 2006;48:75–83.

    Article  PubMed  CAS  Google Scholar 

  59. Klebanoff SJ, Hillier SL, Eschenbach DA, Waltersdorph AM. Control of the microbial flora of the vagina by H2O2-generating lactobacilli. J Infect Dis. 1991;164:94–100.

    Article  PubMed  CAS  Google Scholar 

  60. Voravuthikunchai SP, Bilasoi S, Supamala O. Antagonistic activity against pathogenic bacteria by human vaginal lactobacilli. Anaerobe. 2006;12:221–6.

    Article  PubMed  Google Scholar 

  61. Zhou X, Bent SJ, Schneider MG, Davis CC, Islam MR, et al. Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology (Reading, Engl). 2004;150:2565–73.

    Article  CAS  Google Scholar 

  62. Brotman RM, Ravel J. Ready or not: the molecular diagnosis of bacterial vaginosis. Clin Infect Dis. 2008;47(1):44–6.

    Article  PubMed  Google Scholar 

  63. Fredricks DN, Fiedler TL. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med. 2005;353(18):1899–911.

    Article  PubMed  CAS  Google Scholar 

  64. Verstraelen H, Verhelst R, Claeys G, Temmerman M, Vaneechoutte M. Culture-independent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. YMOB. 2004;191:1130–2.

    Google Scholar 

  65. Linhares IM, Giraldo PC, Baracat EC. New findings about vaginal bacterial flora. Rev Assoc Med Bras. 2010;56:370–4.

    Article  PubMed  Google Scholar 

  66. •• Ravel J, Gajer P, Abdo Z. Vaginal microbiome of reproductive-­age women. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4680–7. This article presents the first comprehensive description of the human vaginal microbiome using high-­throughput sequencing technologies.

    Article  PubMed  CAS  Google Scholar 

  67. •• Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UME, et al. Temporal dynamics of the human vaginal microbiota. Sci Trans Med. 2012;4:132ra52. This article reveals that while some bacterial communities within the human vagina are relatively stable, others change in correlation with menstrual cycle, sexual activity, etc.

    Article  Google Scholar 

  68. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Article  Google Scholar 

  69. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Publ Group. 2009;10:57–63.

    CAS  Google Scholar 

Download references

Acknowledgements

JR was supported by Public Health Services grants UH2AI83264 and U01AI70921 for some of the work described in this article.

Conflict of Interest

L.L. Bradford declares that she has no conflict of interest.

J. Ravel declares that he has no conflict of interest.

V. Bruno declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacques Ravel or Vincent Bruno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradford, L.L., Ravel, J. & Bruno, V. Understanding Vulvovaginal Candidiasis Through a Community Genomics Approach. Curr Fungal Infect Rep 7, 126–131 (2013). https://doi.org/10.1007/s12281-013-0135-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-013-0135-0

Keywords

Navigation