Skip to main content

Advertisement

Log in

Animal Models In Mycology: What Have We Learned Over The Past 30 Years

  • Current Management of Fungal Infections (L Ostrosky-Zeichner, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Animal models have long been used to explore various pathophysiological, immunological and microbiological questions in the field of medical mycology. These models have been adapted and altered over time, yet their use has persisted. They remain valuable as research tools due to similarities to processes in human physiology and disease, and are evolving to include more fungal pathogens and infections that better mimic disease in humans. Animal availability, animal cost, housing requirements, the need for immunosuppression, the potential for tissue, fluid or blood samples, a researcher’s familiarity with the model, as well as governmental or institutional regulations, must all be considered when selecting an appropriate one to use. Although the questions of interest have changed over the past 30 years, one idea persists: animal models are valuable tools in research that span the gap between the bench and the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. • Capilla J, Clemons KV, Stevens DA. Animal models: an important tool in mycology. Med Mycol. 2007;45:657–84. A comprehensive review of animal models of invasive fungal infections.

    Article  PubMed  Google Scholar 

  2. Szabo EK, MacCallum DM. The contribution of mouse models to our understanding of systemic candidiasis. FEMS Microbiol Lett. 2011;320:1–8.

    Article  PubMed  CAS  Google Scholar 

  3. Naglik JR, Fidel Jr PL, Odds FC. Animal models of mucosal Candida infection. FEMS Microbiol Lett. 2008;283:129–39.

    Article  PubMed  CAS  Google Scholar 

  4. Upton A, Kirby KA, Carpenter P, et al. Invasive aspergillosis following hematopoietic cell transplantation: outcomes and prognostic factors associated with mortality. Clin Infect Dis. 2007;44:531–40.

    Article  PubMed  Google Scholar 

  5. Marr KA, Carter RA, Boeckh M, et al. Invasive aspergillosis in allogeneic stem cell transplant recipients: changes in epidemiology and risk factors. Blood. 2002;100:4358–66.

    Article  PubMed  CAS  Google Scholar 

  6. Dixon DM, Polak A, Walsh TJ. Fungus dose-dependent primary pulmonary aspergillosis in immunosuppressed mice. Infect Immun. 1989;57:1452–6.

    PubMed  CAS  Google Scholar 

  7. Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections. Lancet. 2003;362:1828–38.

    Article  PubMed  CAS  Google Scholar 

  8. Lewis RE, Kontoyiannis DP. Invasive aspergillosis in glucocorticoid-treated patients. Med Mycol. 2009;47 Suppl 1:S271–81.

    Article  PubMed  CAS  Google Scholar 

  9. Ng TT, Robson GD, Denning DW. Hydrocortisone-enhanced growth of Aspergillus spp.: implications for pathogenesis. Microbiology. 1994;140(Pt 9):2475–9.

    Article  PubMed  CAS  Google Scholar 

  10. •• Balloy V, Huerre M, Latge JP, Chignard M. Differences in patterns of infection and inflammation for corticosteroid treatment and chemotherapy in experimental invasive pulmonary aspergillosis. Infect Immun. 2005;73:494–503. Study comparing the pathogenesis of invasive pulmonary aspergillosis in neutropenic mice versus those who were immunosuppressed with corticosteroids alone.

    Article  PubMed  CAS  Google Scholar 

  11. • Spikes S, Xu R, Nguyen CK, et al. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J Infect Dis. 2008;197:479–86. Study demonstrating differences in virulence for the mycotoxin gliotoxin between neutropenic and non-neutropenic immunosuppressed mice.

    Article  PubMed  CAS  Google Scholar 

  12. Kirkpatrick WR, McAtee RK, Fothergill AW, et al. Efficacy of SCH56592 in a rabbit model of invasive aspergillosis. Antimicrob Agents Chemother. 2000;44:780–2.

    Article  PubMed  CAS  Google Scholar 

  13. Kirkpatrick WR, McAtee RK, Fothergill AW, et al. Efficacy of posaconazole in a rabbit model of invasive aspergillosis. Antimicrob Agents Chemother. 2000;44:780–2.

    Article  PubMed  CAS  Google Scholar 

  14. Kirkpatrick WR, McAtee RK, Fothergill AW, et al. Efficacy of voriconazole in a guinea pig model of disseminated invasive aspergillosis. Antimicrob Agents Chemother. 2000;44:2865–8.

    Article  PubMed  CAS  Google Scholar 

  15. Mavridou E, Bruggemann RJ, Melchers WJ, et al. Efficacy of posaconazole against three clinical Aspergillus fumigatus isolates with mutations in the cyp51A gene. Antimicrob Agents Chemother. 2010;54:860–5.

    Article  PubMed  CAS  Google Scholar 

  16. Mavridou E, Bruggemann RJ, Melchers WJ, et al. Impact of cyp51A mutations on the pharmacokinetic and pharmacodynamic properties of voriconazole in a murine model of disseminated aspergillosis. Antimicrob Agents Chemother. 2010;54:4758–64.

    Article  PubMed  CAS  Google Scholar 

  17. Lewis RE, Wiederhold NP. Murine model of invasive aspergillosis. Methods Mol Med. 2005;118:129–42.

    PubMed  Google Scholar 

  18. Wiederhold NP, Kontoyiannis DP, Chi J, et al. Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis: evidence of concentration-dependent activity. J Infect Dis. 2004;190:1464–71.

    Article  PubMed  CAS  Google Scholar 

  19. •• Sheppard DC, Rieg G, Chiang LY, et al. Novel inhalational murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2004;48:1908–11. First study to report the use of a nebulizer and an acrylic chamber for the aerosolization of Aspergillus conidia in order to establish invasive pulmonary aspergillosis in mice.

    Article  PubMed  CAS  Google Scholar 

  20. Sheppard DC, Graybill JR, Najvar LK, et al. Standardization of an experimental murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2006;50:3501–3.

    Article  PubMed  CAS  Google Scholar 

  21. Vallor AC, Kirkpatrick WR, Najvar LK, et al. Assessment of Aspergillus fumigatus burden in pulmonary tissue of guinea pigs by quantitative PCR, galactomannan enzyme immunoassay, and quantitative culture. Antimicrob Agents Chemother. 2008;52:2593–8.

    Article  PubMed  CAS  Google Scholar 

  22. Wiederhold NP, Thornton CR, Najvar LK, et al. Comparison of lateral flow technology and galactomannan and (1->3)-beta-D-glucan assays for detection of invasive pulmonary aspergillosis. Clin Vaccine Immunol. 2009;16:1844–6.

    Article  PubMed  CAS  Google Scholar 

  23. Lengerova M, Kocmanova I, Racil Z, et al. Detection and measurement of fungal burden in a guinea pig model of invasive pulmonary aspergillosis by novel quantitative nested real-time PCR compared with galactomannan and (1,3)-beta-D-glucan detection. J Clin Microbiol. 2012;50:602–8.

    Article  PubMed  CAS  Google Scholar 

  24. Dufresne SF, Datta K, Li X, et al. Detection of urinary excreted fungal galactomannan-like antigens for diagnosis of invasive aspergillosis. PLoS One. 2012;7:e42736.

    Article  PubMed  CAS  Google Scholar 

  25. Petraitis V, Petraitiene R, Hope WW, et al. Combination therapy in treatment of experimental pulmonary aspergillosis: in vitro and in vivo correlations of the concentration- and dose- dependent interactions between anidulafungin and voriconazole by Bliss independence drug interaction analysis. Antimicrob Agents Chemother. 2009;53:2382–91.

    Article  PubMed  CAS  Google Scholar 

  26. Hope WW, Petraitis V, Petraitiene R, et al. The initial 96 hours of invasive pulmonary aspergillosis: histopathology, comparative kinetics of galactomannan and (1->3) beta-d-glucan and consequences of delayed antifungal therapy. Antimicrob Agents Chemother. 2010;54:4879–86.

    Article  PubMed  CAS  Google Scholar 

  27. Walsh TJ, Garrett K, Feuerstein E, et al. Therapeutic monitoring of experimental invasive pulmonary aspergillosis by ultrafast computerized tomography, a novel, noninvasive method for measuring responses to antifungal therapy. Antimicrob Agents Chemother. 1995;39:1065–9.

    Article  PubMed  CAS  Google Scholar 

  28. Petraitiene R, Petraitis V, Groll AH, et al. Antifungal activity and pharmacokinetics of posaconazole (SCH 56592) in treatment and prevention of experimental invasive pulmonary aspergillosis: correlation with galactomannan antigenemia. Antimicrob Agents Chemother. 2001;45:857–69.

    Article  PubMed  CAS  Google Scholar 

  29. Petraitiene R, Petraitis V, Groll AH, et al. Antifungal efficacy of caspofungin (MK-0991) in experimental pulmonary aspergillosis in persistently neutropenic rabbits: pharmacokinetics, drug disposition, and relationship to galactomannan antigenemia. Antimicrob Agents Chemother. 2002;46:12–23.

    Article  PubMed  CAS  Google Scholar 

  30. Petraitis V, Petraitiene R, Groll AH, et al. Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother. 2002;46:1857–69.

    Article  PubMed  CAS  Google Scholar 

  31. Ho DY, Lee JD, Rosso F, Montoya JG. Treating disseminated fusariosis: amphotericin B, voriconazole or both? Mycoses. 2007;50:227–31.

    Article  PubMed  CAS  Google Scholar 

  32. Cortez KJ, Roilides E, Quiroz-Telles F, et al. Infections caused by Scedosporium spp. Clin Microbiol Rev. 2008;21:157–97.

    Article  PubMed  CAS  Google Scholar 

  33. Lozano-Chiu M, Arikan S, Paetznick VL, et al. Treatment of murine fusariosis with SCH 56592. Antimicrob Agents Chemother. 1999;43:589–91.

    Article  PubMed  CAS  Google Scholar 

  34. Wiederhold NP, Najvar LK, Bocanegra R, et al. Efficacy of posaconazole as treatment and prophylaxis against Fusarium solani. Antimicrob Agents Chemother. 2010;54:1055–9.

    Article  PubMed  CAS  Google Scholar 

  35. Ruiz-Cendoya M, Marine M, Guarro J. Combined therapy in treatment of murine infection by Fusarium solani. J Antimicrob Chemother. 2008;62:543–6.

    Article  PubMed  CAS  Google Scholar 

  36. Spellberg B, Schwartz J, Fu Y, et al. Comparison of antifungal treatments for murine fusariosis. J Antimicrob Chemother. 2006;58:973–9.

    Article  PubMed  CAS  Google Scholar 

  37. Capilla J, Mayayo E, Serena C, et al. A novel murine model of cerebral scedosporiosis: lack of efficacy of amphotericin B. J Antimicrob Chemother. 2004;54:1092–5.

    Article  PubMed  CAS  Google Scholar 

  38. Rodriguez MM, Calvo E, Serena C, et al. Effects of double and triple combinations of antifungal drugs in a murine model of disseminated infection by Scedosporium prolificans. Antimicrob Agents Chemother. 2009;53:2153–5.

    Article  PubMed  CAS  Google Scholar 

  39. Rodriguez MM, Pastor FJ, Salas V, et al. Experimental murine scedosporiosis: histopathology and azole treatment. Antimicrob Agents Chemother. 2010;54:3980–4.

    Article  PubMed  CAS  Google Scholar 

  40. Gonzalez GM, Tijerina R, Najvar LK, et al. Activity of posaconazole against Pseudallescheria boydii: in vitro and in vivo assays. Antimicrob Agents Chemother. 2003;47:1436–8.

    Article  PubMed  CAS  Google Scholar 

  41. Harun A, Serena C, Gilgado F, et al. Scedosporium aurantiacum is as virulent as S. prolificans, and shows strain-specific virulence differences, in a mouse model. Med Mycol. 2010;48 Suppl 1:S45–51.

    Article  PubMed  Google Scholar 

  42. Ibrahim AS, Avanessian V, Spellberg B, Edwards Jr JE. Liposomal amphotericin B, and not amphotericin B deoxycholate, improves survival of diabetic mice infected with Rhizopus oryzae. Antimicrob Agents Chemother. 2003;47:3343–4.

    Article  PubMed  CAS  Google Scholar 

  43. Ibrahim AS, Bowman JC, Avanessian V, et al. Caspofungin inhibits Rhizopus oryzae 1,3-beta-D-glucan synthase, lowers burden in brain measured by quantitative PCR, and improves survival at a low but not a high dose during murine disseminated zygomycosis. Antimicrob Agents Chemother. 2005;49:721–7.

    Article  PubMed  CAS  Google Scholar 

  44. Ibrahim AS, Edwards Jr JE, Fu Y, Spellberg B. Deferiprone iron chelation as a novel therapy for experimental mucormycosis. J Antimicrob Chemother. 2006;58:1070–3.

    Article  PubMed  CAS  Google Scholar 

  45. Rodriguez MM, Pastor FJ, Calvo E, et al. Correlation of in vitro activity, serum levels, and in vivo efficacy of posaconazole against Rhizopus microsporus in a murine disseminated infection. Antimicrob Agents Chemother. 2009;53:5022–5.

    Article  PubMed  CAS  Google Scholar 

  46. Rodriguez MM, Pastor FJ, Sutton DA, et al. Correlation between in vitro activity of posaconazole and in vivo efficacy against Rhizopus oryzae infection in mice. Antimicrob Agents Chemother. 2010;54:1665–9.

    Article  PubMed  CAS  Google Scholar 

  47. Rodriguez MM, Serena C, Marine M, et al. Posaconazole combined with amphotericin B, an effective therapy for a murine disseminated infection caused by Rhizopus oryzae. Antimicrob Agents Chemother. 2008;52:3786–8.

    Article  PubMed  CAS  Google Scholar 

  48. Ibrahim AS, Gebermariam T, Fu Y, et al. The iron chelator deferasirox protects mice from mucormycosis through iron starvation. J Clin Invest. 2007;117:2649–57.

    Article  PubMed  CAS  Google Scholar 

  49. Liu M, Spellberg B, Phan QT, et al. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J Clin Invest. 2010;120:1914–24.

    Article  PubMed  CAS  Google Scholar 

  50. Lewis RE, Albert ND, Liao G, et al. Comparative pharmacodynamics of amphotericin B lipid complex and liposomal amphotericin B in a murine model of pulmonary mucormycosis. Antimicrob Agents Chemother. 2010;54:1298–304.

    Article  PubMed  CAS  Google Scholar 

  51. Reed C, Bryant R, Ibrahim AS, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis. 2008;47:364–71.

    Article  PubMed  CAS  Google Scholar 

  52. Ibrahim AS, Gebremariam T, Husseiny MI, et al. Comparison of lipid amphotericin B preparations in treating murine zygomycosis. Antimicrob Agents Chemother. 2008;52:1573–6.

    Article  PubMed  CAS  Google Scholar 

  53. MacCallum DM, Odds FC. Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses. 2005;48:151–61.

    Article  PubMed  Google Scholar 

  54. • Lionakis MS, Lim JK, Lee CC, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun. 2011;3:180–99. Recent murine model that demonstrated differences in the temporal and spatial accumulation of leukocytes within different organs following intravenous challenge of mice with C. albicans.

    Article  PubMed  CAS  Google Scholar 

  55. Liu Y, Filler SG. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell. 2011;10:168–73.

    Article  PubMed  CAS  Google Scholar 

  56. Liu Y, Mittal R, Solis NV, et al. Mechanisms of Candida albicans trafficking to the brain. PLoS Pathog. 2011;7:e1002305.

    Article  PubMed  CAS  Google Scholar 

  57. Hope WW, Mickiene D, Petraitis V, et al. The pharmacokinetics and pharmacodynamics of micafungin in experimental hematogenous Candida meningoencephalitis: implications for echinocandin therapy in neonates. J Infect Dis. 2008;197:163–71.

    Article  PubMed  CAS  Google Scholar 

  58. Petraitiene R, Petraitis V, Hope WW, et al. Cerebrospinal fluid and plasma (1–>3)-beta-D-glucan as surrogate markers for detection and monitoring of therapeutic response in experimental hematogenous Candida meningoencephalitis. Antimicrob Agents Chemother. 2008;52:4121–9.

    Article  PubMed  CAS  Google Scholar 

  59. Spellberg B, Ibrahim AS, Edwards Jr JE, Filler SG. Mice with disseminated candidiasis die of progressive sepsis. J Infect Dis. 2005;192:336–43.

    Article  PubMed  Google Scholar 

  60. Lionakis MS, Fischer BG, Lim JK, et al. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog. 2012;8:e1002865.

    Article  PubMed  CAS  Google Scholar 

  61. Ostrosky-Zeichner L, Paetznick VL, Rodriguez J, et al. Activity of anidulafungin in a murine model of Candida krusei infection: evaluation of mortality and disease burden by quantitative tissue cultures and measurement of serum (1,3)-beta-D-glucan levels. Antimicrob Agents Chemother. 2009;53:1639–41.

    Article  PubMed  CAS  Google Scholar 

  62. Salas V, Pastor FJ, Calvo E, et al. Anidulafungin in treatment of experimental invasive infection by Candida parapsilosis: in vitro activity, (1–>3)-beta-D-glucan and mannan serum levels, histopathological findings, and in vivo efficacy. Antimicrob Agents Chemother. 2011;55:4985–9.

    Article  PubMed  CAS  Google Scholar 

  63. Spreghini E, Orlando F, Tavanti A, et al. In vitro and in vivo effects of echinocandins against Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. J Antimicrob Chemother. 2012;67:2195–202.

    Article  PubMed  CAS  Google Scholar 

  64. Brzankalski GE, Najvar LK, Wiederhold NP, et al. Evaluation of aminocandin and caspofungin against Candida glabrata including isolates with reduced caspofungin susceptibility. J Antimicrob Chemother. 2008;62:1094–100.

    Article  PubMed  CAS  Google Scholar 

  65. Graybill JR, Bocanegra R, Luther M, et al. Treatment of murine Candida krusei or Candida glabrata infection with L-743,872. Antimicrob Agents Chemother. 1997;41:1937–9.

    PubMed  CAS  Google Scholar 

  66. Graybill JR, Najvar LK, Luther MF, Fothergill AW. Treatment of murine disseminated candidiasis with L-743,872. Antimicrob Agents Chemother. 1997;41:1775–7.

    PubMed  CAS  Google Scholar 

  67. Wiederhold NP, Najvar LK, Bocanegra R, et al. Comparison of anidulafungin's and fluconazole's in vivo activity in neutropenic and non-neutropenic models of invasive candidiasis. Clin Microbiol Infect. 2012;18:E20–3.

    Article  PubMed  CAS  Google Scholar 

  68. Warn PA, Sharp A, Parmar A, et al. Pharmacokinetics and pharmacodynamics of a novel triazole, isavuconazole: mathematical modeling, importance of tissue concentrations, and impact of immune status on antifungal effect. Antimicrob Agents Chemother. 2009;53:3453–61.

    Article  PubMed  CAS  Google Scholar 

  69. Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–9.

    Article  PubMed  CAS  Google Scholar 

  70. Andes D. Pharmacokinetics and pharmacodynamics of antifungals. Infect Dis Clin North Am. 2006;20:679–97.

    Article  PubMed  Google Scholar 

  71. Hope WW, Drusano GL. Antifungal pharmacokinetics and pharmacodynamics: bridging from the bench to bedside. Clin Microbiol Infect. 2009;15:602–12.

    Article  PubMed  CAS  Google Scholar 

  72. Betts RF, Nucci M, Talwar D, et al. A Multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis. 2009;48:1676–84.

    Article  PubMed  CAS  Google Scholar 

  73. Najvar LK, Bocanegra R, Wiederhold NP, et al. Therapeutic and prophylactic efficacy of aminocandin (IP960) against disseminated candidiasis in mice. Clin Microbiol Infect. 2008;14:595–600.

    Article  PubMed  CAS  Google Scholar 

  74. Wiederhold NP, Najvar LK, Bocanegra RA, et al. Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrob Agents Chemother. 2011;55:3254–60.

    Article  PubMed  CAS  Google Scholar 

  75. Ben-Ami R, Garcia-Effron G, Lewis RE, et al. Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J Infect Dis. 2011;204:626–35.

    Article  PubMed  CAS  Google Scholar 

  76. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL. Candida biofilms: an update. Eukaryot Cell. 2005;4:633–8.

    Article  PubMed  CAS  Google Scholar 

  77. Hawser SP, Baillie GS, Douglas LJ. Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol. 1998;47:253–6.

    Article  PubMed  CAS  Google Scholar 

  78. Andes D, Nett J, Oschel P, et al. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun. 2004;72:6023–31.

    Article  PubMed  CAS  Google Scholar 

  79. Robbins N, Uppuluri P, Nett J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011;7:e1002257.

    Article  PubMed  CAS  Google Scholar 

  80. Uppuluri P, Nett J, Heitman J, Andes D. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother. 2008;52:1127–32.

    Article  PubMed  CAS  Google Scholar 

  81. Nobile CJ, Fox EP, Nett JE, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148:126–38.

    Article  PubMed  CAS  Google Scholar 

  82. Schinabeck MK, Long LA, Hossain MA, et al. Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother. 2004;48:1727–32.

    Article  PubMed  CAS  Google Scholar 

  83. Chandra J, Long L, Ghannoum MA, Mukherjee PK. A rabbit model for evaluation of catheter-associated fungal biofilms. Virulence. 2011;2:466–74.

    Article  PubMed  Google Scholar 

  84. Savage DC, Dubos RJ. Localization of indigenous yeast in the murine stomach. J Bacteriol. 1967;94:1811–6.

    PubMed  CAS  Google Scholar 

  85. Kamai Y, Kubota M, Hosokawa T, et al. New model of oropharyngeal candidiasis in mice. Antimicrob Agents Chemother. 2001;45:3195–7.

    Article  PubMed  CAS  Google Scholar 

  86. Spellberg BJ, Ibrahim AS, Avanesian V, et al. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis. 2006;194:256–60.

    Article  PubMed  CAS  Google Scholar 

  87. Chiang LY, Sheppard DC, Bruno VM, et al. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cell Microbiol. 2007;9:233–45.

    Article  PubMed  CAS  Google Scholar 

  88. Zhu W, Phan QT, Boontheung P, et al. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci U S A. 2012;109:14194–9.

    Article  PubMed  CAS  Google Scholar 

  89. Nett JE, Marchillo K, Spiegel CA, Andes DR. Development and validation of an in vivo Candida albicans biofilm denture model. Infect Immun. 2010;78:3650–9.

    Article  PubMed  CAS  Google Scholar 

  90. • Johnson CC, Yu A, Lee H, et al. Development of a contemporary animal model of Candida albicans-associated denture stomatitis using a novel intraoral denture system. Infect Immun. 2012;80:1736–43. New model of dental stomatitis in rats in which the development of the C. albicans biofilm on the removable prosthetic and tissue inflammation closely mimic that observed in humans.

    Article  PubMed  CAS  Google Scholar 

  91. Styrt B, Sugarman B. Estrogens and infection. Rev Infect Dis. 1991;13:1139–50.

    Article  PubMed  CAS  Google Scholar 

  92. Yano J, Noverr MC, Fidel Jr PL. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins. Cytokine. 2012;58:118–28.

    Article  PubMed  CAS  Google Scholar 

  93. Yamaguchi N, Sonoyama K, Kikuchi H, et al. Gastric colonization of Candida albicans differs in mice fed commercial and purified diets. J Nutr. 2005;135:109–15.

    PubMed  CAS  Google Scholar 

  94. Hardison SE, Herrera G, Young ML, et al. Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation. J Immunol. 2012;189:4060–8.

    Article  PubMed  CAS  Google Scholar 

  95. Hole CR, Wormley Jr FL. Vaccine and immunotherapeutic approaches for the prevention of cryptococcosis: lessons learned from animal models. Front Microbiol. 2012;3:291.

    PubMed  Google Scholar 

  96. Lortholary O, Improvisi L, Rayhane N, et al. Cytokine profiles of AIDS patients are similar to those of mice with disseminated Cryptococcus neoformans infection. Infect Immun. 1999;67:6314–20.

    PubMed  CAS  Google Scholar 

  97. Lortholary O, Nicolas M, Soreda S, et al. Fluconazole, with or without dexamethasone for experimental cryptococcosis: impact of treatment timing. J Antimicrob Chemother. 1999;43:817–24.

    Article  PubMed  CAS  Google Scholar 

  98. Diamond DM, Bauer M, Daniel BE, et al. Amphotericin B colloidal dispersion combined with flucytosine with or without fluconazole for treatment of murine cryptococcal meningitis. Antimicrob Agents Chemother. 1998;42:528–33.

    PubMed  CAS  Google Scholar 

  99. Ding JC, Bauer M, Diamond DM, et al. Effect of severity of meningitis on fungicidal activity of flucytosine combined with fluconazole in a murine model of cryptococcal meningitis. Antimicrob Agents Chemother. 1997;41:1589–93.

    PubMed  CAS  Google Scholar 

  100. Perfect JR, Dismukes WE, Dromer F, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50:291–322.

    Article  PubMed  Google Scholar 

  101. Kirkpatrick WR, Najvar LK, Bocanegra R, et al. New guinea pig model of Cryptococcal meningitis. Antimicrob Agents Chemother. 2007;51:3011–3.

    Article  PubMed  CAS  Google Scholar 

  102. Carroll SF, Guillot L, Qureshi ST. Mammalian model hosts of cryptococcal infection. Comp Med. 2007;57:9–17.

    PubMed  CAS  Google Scholar 

  103. Odom A, Del Poeta M, Perfect J, Heitman J. The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. Antimicrob Agents Chemother. 1997;41:156–61.

    PubMed  CAS  Google Scholar 

  104. Goldman D, Lee SC, Casadevall A. Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat. Infect Immun. 1994;62:4755–61.

    PubMed  CAS  Google Scholar 

  105. Graybill JR, Ahrens J, Nealon T, Paque R. Pulmonary cryptococcosis in the rat. Am Rev Respir Dis. 1983;127:636–40.

    PubMed  CAS  Google Scholar 

  106. Capilla J, Maffei CM, Clemons KV, et al. Experimental systemic infection with Cryptococcus neoformans var. grubii and Cryptococcus gattii in normal and immunodeficient mice. Med Mycol. 2006;44:601–10.

    Article  PubMed  Google Scholar 

  107. Sorrell TC. Cryptococcus neoformans variety gattii. Med Mycol. 2001;39:155–68.

    PubMed  CAS  Google Scholar 

  108. Thompson 3rd GR, Wiederhold NP, Najvar LK, et al. A murine model of Cryptococcus gattii meningoencephalitis. J Antimicrob Chemother. 2012;67:1432–8.

    Article  PubMed  CAS  Google Scholar 

  109. Mitchell DH, Sorrell TC, Allworth AM, et al. Cryptococcal disease of the CNS in immunocompetent hosts: influence of cryptococcal variety on clinical manifestations and outcome. Clin Infect Dis. 1995;20:611–6.

    Article  PubMed  CAS  Google Scholar 

  110. Hospenthal DR, Bennett JE. Persistence of cryptococcomas on neuroimaging. Clin Infect Dis. 2000;31:1303–6.

    Article  PubMed  CAS  Google Scholar 

  111. • Chamilos G, Lionakis MS, Lewis RE, Kontoyiannis DP. Role of mini-host models in the study of medically important fungi. Lancet Infect Dis. 2007;7:42–55. Excellent review of invertebrate host models of invasive fungal infections.

    Article  PubMed  Google Scholar 

  112. Pukkila-Worley R, Holson E, Wagner F, Mylonakis E. Antifungal drug discovery through the study of invertebrate model hosts. Curr Med Chem. 2009;16:1588–95.

    Article  PubMed  CAS  Google Scholar 

  113. Lionakis MS, Lewis RE, May GS, et al. Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis. 2005;191:1188–95.

    Article  PubMed  CAS  Google Scholar 

  114. Cowen LE, Singh SD, Kohler JR, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci U S A. 2009;106:2818–23.

    Article  PubMed  CAS  Google Scholar 

  115. Tzou P, Ohresser S, Ferrandon D, et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity. 2000;13:737–48.

    Article  PubMed  CAS  Google Scholar 

  116. Brennan CA, Anderson KV. Drosophila: the genetics of innate immune recognition and response. Annu Rev Immunol. 2004;22:457–83.

    Article  PubMed  CAS  Google Scholar 

  117. Ha EM, Oh CT, Bae YS, Lee WJ. A direct role for dual oxidase in Drosophila gut immunity. Science. 2005;310:847–50.

    Article  PubMed  CAS  Google Scholar 

  118. Chamilos G, Lionakis MS, Lewis RE, et al. Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J Infect Dis. 2006;193:1014–22.

    Article  PubMed  CAS  Google Scholar 

  119. Lamaris GA, Chamilos G, Lewis RE, Kontoyiannis DP. Virulence studies of Scedosporium and Fusarium species in Drosophila melanogaster. J Infect Dis. 2007;196:1860–4.

    Article  PubMed  Google Scholar 

  120. Lionakis MS. Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology. Virulence. 2011;2:521–7.

    Article  PubMed  Google Scholar 

  121. Cronin SJ, Nehme NT, Limmer S, et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science. 2009;325:340–3.

    Article  PubMed  CAS  Google Scholar 

  122. Mylonakis E, Casadevall A, Ausubel FM. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 2007;3:e101.

    Article  PubMed  CAS  Google Scholar 

  123. Mylonakis E, Moreno R, El Khoury JB, et al. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun. 2005;73:3842–50.

    Article  PubMed  CAS  Google Scholar 

  124. Vogel H, Altincicek B, Glockner G, Vilcinskas A. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics. 2011;12:308.

    Article  PubMed  Google Scholar 

  125. London R, Orozco BS, Mylonakis E. The pursuit of cryptococcal pathogenesis: heterologous hosts and the study of cryptococcal host-pathogen interactions. FEMS Yeast Res. 2006;6:567–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

W. R. Kirkpatrick: has served as an advisory board member for Astellas; N. P. Wiederhold: has served as an advisory board member for Viamet, Toyama Chemical Company, Astellas and Merck, provided consultancy for Toyama Chemical Company, received grants from Astellas, Pfizer, Merck, Schering-Plough, Basilea, and received travel funds from Viamet Pharmaceuticals; L. K. Najvar: has served as an advisory board member for Astellas; T. F. Patterson: has provided consultancy for Pfizer, Astellas, Merck, Toyoma Chemical Company, and Viamet, received grants form Astellas and Merck, and lectured for Merck and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Kirkpatrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkpatrick, W.R., Wiederhold, N.P., Najvar, L.K. et al. Animal Models In Mycology: What Have We Learned Over The Past 30 Years. Curr Fungal Infect Rep 7, 68–78 (2013). https://doi.org/10.1007/s12281-012-0126-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-012-0126-6

Keywords

Navigation