Skip to main content

Advertisement

Log in

Phenotypic switching in fungi

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Over the past three decades new fungal diseases have emerged that now constitute a major threat, especially for patients with chronic diseases and/or underlying immune deficiencies. Despite the epidemiologic data, the emergence of stable drug-resistant or hypervirulent fungal strains in human disease has not been demonstrated as seen in emerging viral and bacterial infections. Fungi are eukaryotic microbes that capitalize on a sophisticated built-in ability to generate phenotypic variability. This successful strategy allows them to undergo rapid adaptation in response to environmental challenges, such as individual body locations that may exhibit drastic differences in temperature and pH. Rapid microevolution can also confer drug resistance and protect them from the host’s immune response. This review explores phenotypic switching in pathogenic fungi, including Candida spp and Cryptococcus spp, and how phenotypic switching contributes to the pathogenesis of fungal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Slutsky B, Buffo J, Soll DR: High-frequency switching of colony morphology in Candida albicans. Science 1985, 230:666–669.

    Article  PubMed  CAS  Google Scholar 

  2. Slutsky B, Staebell M, Anderson J, et al.: “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 1987, 169:189–197.

    PubMed  CAS  Google Scholar 

  3. Lachke SA, Srikantha T, Tsai LK, et al.: Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP. Infect Immun 2000, 68:884–895.

    Article  PubMed  CAS  Google Scholar 

  4. Goldman DL, Fries BC, Franzot SP, et al.: Phenotypic switching in the human pathogenic fungus Cryptococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc Natl Acad Sci U S A 1998, 95:14967–14972.

    Article  PubMed  CAS  Google Scholar 

  5. Fries BC, Goldman DL, Cherniak R, et al.: Phenotypic switching in Cryptococcus neoformans results in changes in cellular morphology and glucuronoxylomannan structure. Infect Immun 1999, 67:6076–6083.

    PubMed  CAS  Google Scholar 

  6. Fries BC, Taborda CP, Serfass E, Casadevall A. Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection. J Clin Invest 2001, 108:1639–1648.

    PubMed  CAS  Google Scholar 

  7. Kugler S, Schurtz Sebghati T, Groppe Eissenberg L, Goldman WE: Phenotypic variation and intracellular parasitism by Histoplasma Capsulatum. Proc Natl Acad Sci U S A 2000, 97:8794–8798.

    Article  PubMed  CAS  Google Scholar 

  8. Sinha H, Pain A, Johnstone K: Analysis of the role of recA in phenotypic switching of Pseudomonas tolaasii. J Bacteriol 2000, 182:6532–6535.

    Article  PubMed  CAS  Google Scholar 

  9. Soll DR: High-frequency switching in Candida albicans. Clin Microbiol Rev 1992, 5:183–203.

    PubMed  CAS  Google Scholar 

  10. Myler P, Allison J, Agabian N, Stuart K: Antigenic variation in African trypanosomes by gene replacement or activation of alternate telomeres. Cell 1984, 39:203–211.

    Article  PubMed  CAS  Google Scholar 

  11. Swartley L, Marfin A, Edupuganti S, et al.: Capsule switching of Neisseria meningitidis. PNAS 1997; 94:271–276.

    Article  PubMed  CAS  Google Scholar 

  12. Pomes R, Gil C, Nombela C: Genetic analysis of Candida albicans morphological mutants. J Gen Microbiol 1985, 131:2107–2113.

    PubMed  CAS  Google Scholar 

  13. Ramsey H, Morrow B, Soll DR: An increase in switching frequency correlates with an increase in recombination of the ribosomal chromosomes of Candida albicans strain 3153A. Microbiology 1994, 140(Pt 7):1525–1531.

    Article  PubMed  CAS  Google Scholar 

  14. Anderson JM, Soll DR: Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J Bacteriol 1987, 169:5579–5588.

    PubMed  CAS  Google Scholar 

  15. Rikkerink EH, Magee BB, Magee PT: Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. J Bacteriol 1988, 170:895–899.

    PubMed  CAS  Google Scholar 

  16. Legrand M, Lephart P, Forche A, et al.: Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol Microbiol 2004, 52:1451–1462.

    Article  PubMed  CAS  Google Scholar 

  17. Lockhart SR, Pujol C, Daniels KJ, et al.: In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 2002, 162:737–745.

    PubMed  CAS  Google Scholar 

  18. Hull CM, Raisner RM, Johnson AD: Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 2000, 289:307–310.

    Article  PubMed  CAS  Google Scholar 

  19. Srikantha T, Chandrasekhar A, Soll DR: Functional analysis of the promoter of the phase-specific WH11 gene of Candida albicans. Mol Cell Biol 1995, 15:1797–1805.

    PubMed  CAS  Google Scholar 

  20. Lockhart SR, Nguyen M, Srikantha T, Soll DR: A MADS box protein consensus binding site is necessary and sufficient for activation of the opaque-phase-specific gene OP4 of Candida albicans. J Bacteriol 1998, 180:6607–6616.

    PubMed  CAS  Google Scholar 

  21. Sonneborn A, Tebarth B, Ernst JF: Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun 1999, 67:4655–4660.

    PubMed  CAS  Google Scholar 

  22. Morrow B, Srikantha T, Soll DR: Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol Cell Biol 1992, 12:2997–3005.

    PubMed  CAS  Google Scholar 

  23. Hube B, Monod M, Schofield DA, et al.: Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 1994, 14:87–99.

    Article  PubMed  CAS  Google Scholar 

  24. Balan I, Alarco AM, Raymond M: The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J Bacteriol 1997, 179:7210–7218.

    PubMed  CAS  Google Scholar 

  25. Kvaal C, Lachke SA, Srikantha T, et al.: Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 1999, 67:6652–6662.

    PubMed  CAS  Google Scholar 

  26. Lachke SA, Lockhart SR, Daniels KJ, Soll DR: Skin facilitates Candida albicans mating. Infect Immun 2003, 71:4970–4976.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson J, Mihalik R, Soll DR: Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J Bacteriol 1990, 172:224–235.

    PubMed  CAS  Google Scholar 

  28. Kolotila MP, Diamond RD: Effects of neutrophils and in vitro oxidants on survival and phenotypic switching of Candida albicans WO-1. Infect Immun 1990, 58:1174–1179.

    PubMed  CAS  Google Scholar 

  29. Kennedy MJ, Rogers AL, Hanselmen LR, et al.: Variation in adhesion and cell surface hydrophobicity in Candida albicans white and opaque phenotypes. Mycopathologia 1988, 102:149–156.

    Article  PubMed  CAS  Google Scholar 

  30. Vargas K, Messer SA, Pfaller M, et al.: Elevated phenotypic switching and drug resistance of Candida albicans from human immunodeficiency virus-positive individuals prior to first thrush episode. J Clin Microbiol 2000, 38:3595–3607.

    PubMed  CAS  Google Scholar 

  31. Lohse MB, Johnson AD: Differential Phagocytosis of White versus Opaque Candida albicans by Drosophila and Mouse Phagocytes. PLoS ONE 2008, 3:e1473.

    Article  PubMed  CAS  Google Scholar 

  32. Lan CY, Newport G, Murillo LA, et al.: Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A 2002, 99:14907–14912.

    Article  PubMed  CAS  Google Scholar 

  33. Zordan RE, Galgoczy DJ, Johnson AD: Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci U S A 2006, 103:12807–12812.

    Article  PubMed  CAS  Google Scholar 

  34. Zordan RE, Miller MG, Galgoczy DJ, et al.: Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol 2007, 5:e256.

    Article  PubMed  CAS  Google Scholar 

  35. Fidel PL Jr, Vazquez JA, Sobel JD: Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 1999, 12:80–96.

    PubMed  Google Scholar 

  36. Lachke SA, Joly S, Daniels K, Soll DR: Phenotypic switching and filamentation in Candida glabrata. Microbiology 2002, 148(Pt 9):2661–2674.

    PubMed  CAS  Google Scholar 

  37. Merz WG: Candida lusitaniae: frequency of recovery, colonization, infection, and amphotericin B resistance. J Clin Microbiol 1984, 20:1194–1195.

    PubMed  CAS  Google Scholar 

  38. Young LY, Hull CM, Heitman J: Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother 2003, 47:2717–2724.

    Article  PubMed  CAS  Google Scholar 

  39. Ichikawa T, Sugita T, Wang L, et al.: Phenotypic switching and beta-N-acetylhexosaminidase activity of the pathogenic yeast Trichosporon asahii. Microbiol Immunol 2004, 48:237–242.

    PubMed  CAS  Google Scholar 

  40. Ebright JR, Fairfax MR, Vazquez JA: Trichosporon asahii, a non-Candida yeast that caused fatal septic shock in a patient without cancer or neutropenia. Clin Infect Dis 2001, 33:E28–E30.

    Article  PubMed  CAS  Google Scholar 

  41. Upton A, Fraser JA, Kidd SE, et al.: First contemporary case of human infection with Cryptococcus gattii in Puget Sound: evidence for spread of the Vancouver Island outbreak. J Clin Microbiol 2007, 45:3086–3088.

    Article  PubMed  CAS  Google Scholar 

  42. Jain N, Li L, McFadden DC, et al.: Phenotypic switching in a Cryptococcus neoformans variety gattii strain is associated with changes in virulence and promotes dissemination to the central nervous system. Infect Immun 2006, 74:896–903.

    Article  PubMed  CAS  Google Scholar 

  43. Feldmesser M, Kress Y, Novikoff P, Casadevall A: Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 2000, 68:4225–4237.

    Article  PubMed  CAS  Google Scholar 

  44. Levitz SM, Nong SH, Seetoo KF, et al.: Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect Immun 1999, 67:885–890.

    PubMed  CAS  Google Scholar 

  45. Cherniak R, Valafar H, Morris L, Valafar F: Cryptococcus neoformans chemotyping by quantitative analysis of 1H nuclear magnetic resonance spectra of glucuronxylomannans with a computer-simulated artificial neural network. Clinical and Diagnostic Laboratory Immunology 1998, 5:146–159.

    PubMed  CAS  Google Scholar 

  46. McFadden DC, Fries BC, Wang F, Casadevall A: Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot Cell 2007, 6:1464–1473.

    Article  PubMed  CAS  Google Scholar 

  47. Fries BC, Lee SC, Kennan R, et al.: Phenotypic switching of Cryptococcus neoformans can produce variants that elicit increased intracranial pressure in a rat model of cryptococcal meningoencephalitis. Infect Immun 2005, 73:1779–1787.

    Article  PubMed  CAS  Google Scholar 

  48. Fries BC, Cook E, Wang X, Casadevall A: Effects of antifungal interventions on the outcome of experimental infections with phenotypic switch variants of Cryptococcus neoformans. Antimicrob Agents Chemother 2005, 49:350–357.

    Article  PubMed  CAS  Google Scholar 

  49. Franzot SP, Mukherjee J, Cherniak R, et al.: Microevolution of a standard strain of Cryptococcus neoformans resulting in differences in virulence and other phenotypes. Infect Immun 1998, 66:89–97.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina C. Fries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, N., Hasan, F. & Fries, B.C. Phenotypic switching in fungi. Curr Fungal Infect Rep 2, 180–188 (2008). https://doi.org/10.1007/s12281-008-0026-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-008-0026-y

Keywords

Navigation